skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accounting for Uncertainty in regional flow-ecology relationships
Flow–ecology relationships are critical for developing and adaptively managing environmental flows. However, uncertainty often arises from data limitations and an incomplete understanding of the spatial and temporal attributes inherent to each relationship. Accounting for sources of uncertainty is critical given the mounting interest in implementing environmental flows at large scales, often with limited information. We used the South Fork Eel River watershed in northern California as a case study to demonstrate how data gaps and uncertainty in flow–ecology relationships may be better quantified. A rigorous literature review revealed that few flow–ecology relationships related directly to the flow regime, and none spanned the full range of hydrologic or geomorphic variability exhibited across the watershed. Identified data gaps informed several sensitivity analyses within a Bayesian network model which showed that the modeled ecological outcome differed by as much as 50% depending on the type and magnitude of uncertainty. This study presents a general regional framework for quantifying spatial and temporal data gaps that can be applied to other watersheds and information types to improve representation of uncertainty in flow–ecology relationships and to inform environmental flow design.  more » « less
Award ID(s):
1633756
PAR ID:
10377601
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of water resources planning and management
Volume:
148
Issue:
4
ISSN:
0733-9496
Page Range / eLocation ID:
05022001-1 - 05022001-13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For wildlife inhabiting snowy environments, snow properties such as onset date, depth, strength, and distribution can influence many aspects of ecology, including movement, community dynamics, energy expenditure, and forage accessibility. As a result, snow plays a considerable role in individual fitness and ultimately population dynamics, and its evaluation is, therefore, important for comprehensive understanding of ecosystem processes in regions experiencing snow. Such understanding, and particularly study of how wildlife–snow relationships may be changing, grows more urgent as winter processes become less predictable and often more extreme under global climate change. However, studying and monitoring wildlife–snow relationships continue to be challenging because characterizing snow, an inherently complex and constantly changing environmental feature, and identifying, accessing, and applying relevant snow information at appropriate spatial and temporal scales, often require a detailed understanding of physical snow science and technologies that typically lie outside the expertise of wildlife researchers and managers. We argue that thoroughly assessing the role of snow in wildlife ecology requires substantive collaboration between researchers with expertise in each of these two fields, leveraging the discipline‐specific knowledge brought by both wildlife and snow professionals. To facilitate this collaboration and encourage more effective exploration of wildlife–snow questions, we provide a five‐step protocol: (1) identify relevant snow property information; (2) specify spatial, temporal, and informational requirements; (3) build the necessary datasets; (4) implement quality control procedures; and (5) incorporate snow information into wildlife analyses. Additionally, we explore the types of snow information that can be used within this collaborative framework. We illustrate, in the context of two examples, field observations, remote‐sensing datasets, and four example modeling tools that simulate spatiotemporal snow property distributions and, in some cases, evolutions. For each type of snow data, we highlight the collaborative opportunities for wildlife and snow professionals when designing snow data collection efforts, processing snow remote sensing products, producing tailored snow datasets, and applying the resulting snow information in wildlife analyses. We seek to provide a clear path for wildlife professionals to address wildlife–snow questions and improve ecological inference by integrating the best available snow science through collaboration with snow professionals. 
    more » « less
  2. Abstract How precipitation (P) is translated into streamflow (Q) and over what timescales (i.e., “memory”) is difficult to predict without calibration of site‐specific models or using geochemical approaches, posing barriers to prediction in ungauged basins or advancement of general theories. Here, we used a data‐driven approach to identify regional patterns and exogenous controls on P–Q interactions. We applied an information flow analysis, which quantifies uncertainty reduction, to a daily time series of P and Q from 671 watersheds across the conterminous United States. We first demonstrated that information transfer from P to Q primarily reflects the quickflow component of water‐budgets, based on a watershed model. Readily quantifiable information flows show a functional relationship with model parameters, suggesting utility for model calibration. Second, applied to real watersheds, P–Q information flows exhibit seasonally varying behavior within regions in a manner consistent with dominant runoff generation mechanisms. However, the timing and the magnitude of information flows also reflect considerable subregional heterogeneity, likely attributable to differences in watershed size, baseflow contributions, and variation in aerial coverage of preferential flow paths. A regression analysis showed that a combination of climate and watershed characteristics are predictive of P–Q information flows. Though information flows cannot, in most cases, uniquely determine dominant runoff mechanisms, they provide a means to quantify the heterogeneous outcomes of those mechanisms within regions, thereby serving as a benchmarking tool for models developed at the regional scale. Last, information flows characterize regionally specific ways in which catchment connectivity changes from the wet to dry season. 
    more » « less
  3. null (Ed.)
    Long-term streamflow datasets inevitably include gaps, which must be filled to allow estimates of runoff and ultimately catchment water budgets. Uncertainty introduced by filling gaps in discharge records is rarely, if ever, reported. We characterized the uncertainty due to streamflow gaps in a reference watershed at the Hubbard Brook Experimental Forest (HBEF) from 1996 to 2009 by simulating artificial gaps of varying duration and flow rate, with the objective of quantifying their contribution to uncertainty in annual streamflow. Gaps were filled using an ensemble of regressions relating discharge from nearby streams, and the predicted flow was compared to the actual flow. Differences between the predicted and actual runoff increased with both gap length and flow rate, averaging 2.8% of the runoff during the gap. At the HBEF, the sum of gaps averaged 22 days per year, with the lowest and highest annual uncertainties due to gaps ranging from 1.5 mm (95% confidence interval surrounding mean runoff) to 21.1 mm. As a percentage of annual runoff, uncertainty due to gap filling ranged from 0.2–2.1%, depending on the year. Uncertainty in annual runoff due to gaps was small at the HBEF, where infilling models are based on multiple similar catchments in close proximity to the catchment of interest. The method demonstrated here can be used to quantify uncertainty due to gaps in any long-term streamflow data set, regardless of the gap-filling model applied. 
    more » « less
  4. Abstract Large-scale environmental sequencing efforts have transformed our understanding of the spatial controls over soil microbial community composition and turnover. Yet, our knowledge of temporal controls is comparatively limited. This is a major uncertainty in microbial ecology, as there is increasing evidence that microbial community composition is important for predicting microbial community function in the future. Here, we use continental- and global-scale soil fungal community surveys, focused within northern temperate latitudes, to estimate the relative contribution of time and space to soil fungal community turnover. We detected large intra-annual temporal differences in soil fungal community similarity, where fungal communities differed most among seasons, equivalent to the community turnover observed over thousands of kilometers in space. inter-annual community turnover was comparatively smaller than intra-annual turnover. Certain environmental covariates, particularly climate covariates, explained some spatial–temporal effects, though it is unlikely the same mechanisms drive spatial vs. temporal turnover. However, these commonly measured environmental covariates could not fully explain relationships between space, time and community composition. These baseline estimates of fungal community turnover in time provide a starting point to estimate the potential duration of legacies in microbial community composition and function. 
    more » « less
  5. Landscape structure in the Eastern US experienced great changes in the last century with the expansion of forest cover into abandoned agricultural land and the clearing of secondary forest cover for urban development. In this paper, the spatial and temporal patterns of forest cover from 1914 to 2004 in the Gwynns Falls watershed in Baltimore, Maryland were quantified from historic maps and aerial photographs. Using a database of forest patches from six times—1914, 1938, 1957, 1971, 1999, and 2004—we found that forest cover changed, both temporally and spatially. While total forest area remained essentially constant, turnover in forest cover was very substantial. Less than 20% of initial forest cover remained unchanged. Forest cover became increasingly fragmented as the number, size, shape, and spatial distribution of forest patches within the watershed changed greatly. Forest patch change was also analyzed within 3-km distance bands extending from the urban core to the more suburban end of the watershed. This analysis showed that, over time, the location of high rates of forest cover change shifted from urban to suburban bands which coincides with the spatial shift of urbanization. Forest cover tended to be more stable in and near the urban center, whereas forest cover changed more in areas where urbanization was still in process. These results may have critical implications for the ecological functioning of forest patches and underscore the need to integrate multi-temporal data layers to investigate the spatial pattern of forest cover and the temporal variations of that spatial pattern. Zhou, W., G. Huang, S. T. A. Pickett, and M. L. Cadenasso. 2011. 90 Years of Forest Cover Change in an Urbanizing Watershed: Spatial and Temporal Dynamics. Landscape Ecology 26:645–659. https://doi.org/10.1007/s10980-011-9589-z. 
    more » « less