skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning to Assimilate in Chaotic Dynamical Systems
The accuracy of simulation-based forecasting in chaotic systems is heavily dependent on high-quality estimates of the system state at the beginning of the forecast. Data assimilation methods are used to infer these initial conditions by systematically combining noisy, incomplete observations and numerical models of system dynamics to produce highly effective estimation schemes. We introduce a self-supervised framework, which we call \textit{amortized assimilation}, for learning to assimilate in dynamical systems. Amortized assimilation combines deep learning-based denoising with differentiable simulation, using independent neural networks to assimilate specific observation types while connecting the gradient flow between these sub-tasks with differentiable simulation and shared recurrent memory. This hybrid architecture admits a self-supervised training objective which is minimized by an unbiased estimator of the true system state even in the presence of only noisy training data. Numerical experiments across several chaotic benchmark systems highlight the improved effectiveness of our approach compared to widely-used data assimilation methods.  more » « less
Award ID(s):
1835825
PAR ID:
10443541
Author(s) / Creator(s):
;
Editor(s):
Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.S.; Vaughan, J. Wortman
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
34
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Models of many engineering and natural systems are imperfect. The discrepancy between the mathematical representations of a true physical system and its imperfect model is called the model error. These model errors can lead to substantial differences between the numerical solutions of the model and the state of the system, particularly in those involving nonlinear, multi-scale phenomena. Thus, there is increasing interest in reducing model errors, particularly by leveraging the rapidly growing observational data to understand their physics and sources. Here, we introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation. MEDIDA only requires a working numerical solver of the model and a small number of noise-free or noisy sporadic observations of the system. In MEDIDA, first, the model error is estimated from differences between the observed states and model-predicted states (the latter are obtained from a number of one-time-step numerical integrations from the previous observed states). If observations are noisy, a data assimilation technique, such as the ensemble Kalman filter, is employed to provide the analysis state of the system, which is then used to estimate the model error. Finally, an equation-discovery technique, here the relevance vector machine, a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, and closed-form representation of the model error. Using the chaotic Kuramoto–Sivashinsky system as the test case, we demonstrate the excellent performance of MEDIDA in discovering different types of structural/parametric model errors, representing different types of missing physics, using noise-free and noisy observations. 
    more » « less
  2. null (Ed.)
    High-throughput phenotyping enables the efficient collection of plant trait data at scale. One example involves using imaging systems over key phases of a crop growing season. Although the resulting images provide rich data for statistical analyses of plant phenotypes, image processing for trait extraction is required as a prerequisite. Current methods for trait extraction are mainly based on supervised learning with human labeled data or semisupervised learning with a mixture of human labeled data and unsupervised data. Unfortunately, preparing a sufficiently large training data is both time and labor-intensive. We describe a self-supervised pipeline (KAT4IA) that uses K -means clustering on greenhouse images to construct training data for extracting and analyzing plant traits from an image-based field phenotyping system. The KAT4IA pipeline includes these main steps: self-supervised training set construction, plant segmentation from images of field-grown plants, automatic separation of target plants, calculation of plant traits, and functional curve fitting of the extracted traits. To deal with the challenge of separating target plants from noisy backgrounds in field images, we describe a novel approach using row-cuts and column-cuts on images segmented by transform domain neural network learning, which utilizes plant pixels identified from greenhouse images to train a segmentation model for field images. This approach is efficient and does not require human intervention. Our results show that KAT4IA is able to accurately extract plant pixels and estimate plant heights. 
    more » « less
  3. Real-world robotics applications demand object pose estimation methods that work reliably across a variety of scenarios. Modern learning-based approaches require large labeled datasets and tend to perform poorly outside the training domain. Our first contribution is to develop a robust corrector module that corrects pose estimates using depth information, thus enabling existing methods to better generalize to new test domains; the corrector operates on semantic keypoints (but is also applicable to other pose estimators) and is fully differentiable. Our second contribution is an ensemble self-training approach that simultaneously trains multiple pose estimators in a self-supervised manner. Our ensemble self-training architecture uses the robust corrector to refine the output of each pose estimator; then, it evaluates the quality of the outputs using observable correctness certificates; finally, it uses the observably correct outputs for further training, without requiring external supervision. As an additional contribution, we propose small improvements to a regression-based keypoint detection architecture, to enhance its robustness to outliers; these improvements include a robust pooling scheme and a robust centroid computation. Experiments on the YCBV and TLESS datasets show the proposed ensemble self-training outperforms fully supervised baselines while not requiring 3D annotations on real data. 
    more » « less
  4. Abstract Symbolic time series analysis (STSA) plays an important role in the investigation of continuously evolving dynamical systems, where the capability to interpret the joint effects of multiple sensor signals is essential for adequate representation of the embedded knowledge. This technical brief develops and validates, by simulation, an STSA-based algorithm to make timely decisions on dynamical systems for information fusion and pattern classification from ensembles of multisensor time series data. In this context, one of the most commonly used methods has been neural networks (NN) in their various configurations; however, these NN-based methods may require large-volume data and prolonged computational time for training. An alternative feasible method is the STSA-based probabilistic finite state automata (PFSA), which has been shown in recent literature to require significantly less training data and to be much faster than NN for training and, to some extent, for testing. This technical brief reports a modification of the current PFSA methods to accommodate (possibly heterogeneous and not necessarily tightly synchronized) multisensor data fusion and (supervised learning-based) pattern classification in real-time. Efficacy of the proposed method is demonstrated by fusion of time series of position and velocity sensor data, generated from a simulation model of the forced Duffing equation. 
    more » « less
  5. Abstract PurposeTo examine the effect of incorporating self‐supervised denoising as a pre‐processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K‐space data employed for training are typically multi‐coil and inherently noisy. Although DL‐based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise‐free datasets is impractical. MethodsWe leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL‐based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model‐Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL‐based methods in solving accelerated multi‐coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2‐weighted brain and fat‐suppressed proton‐density knee scans. ResultsWe observed that self‐supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal‐to‐noise ratio (PSNR) across different SNR levels, including 32, 22, and 12 dB for T2‐weighted brain data, and 24, 14, and 4 dB for fat‐suppressed knee data. ConclusionWe showed that denoising is an essential pre‐processing technique capable of improving the efficacy of DL‐based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise‐free reference MRI scans. 
    more » « less