skip to main content


Title: Adaptive Exploration and Optimization of Materials Crystal Structures
A central problem of materials science is to determine whether a hypothetical material is stable without being synthesized, which is mathematically equivalent to a global optimization problem on a highly nonlinear and multimodal potential energy surface (PES). This optimization problem poses multiple outstanding challenges, including the exceedingly high dimensionality of the PES, and that PES must be constructed from a reliable, sophisticated, parameters-free, and thus very expensive computational method, for which density functional theory (DFT) is an example. DFT is a quantum mechanics-based method that can predict, among other things, the total potential energy of a given configuration of atoms. DFT, although accurate, is computationally expensive. In this work, we propose a novel expansion-exploration-exploitation framework to find the global minimum of the PES. Starting from a few atomic configurations, this “known” space is expanded to construct a big candidate set. The expansion begins in a nonadaptive manner, where new configurations are added without their potential energy being considered. A novel feature of this step is that it tends to generate a space-filling design without the knowledge of the boundaries of the domain space. If needed, the nonadaptive expansion of the space of configurations is followed by adaptive expansion, where “promising regions” of the domain space (those with low-energy configurations) are further expanded. Once a candidate set of configurations is obtained, it is simultaneously explored and exploited using Bayesian optimization to find the global minimum. The methodology is demonstrated using a problem of finding the most stable crystal structure of aluminum. History: Kwok Tsui served as the senior editor for this article. Funding: The authors acknowledge a U.S. National Science Foundation Grant DMREF-1921873 and XSEDE through Grant DMR170031. Data Ethics & Reproducibility Note: The code capsule is available on Code Ocean at https://codeocean.com/capsule/3366149/tree and in the e-Companion to this article (available at https://doi.org/10.1287/ijds.2023.0028 ).  more » « less
Award ID(s):
1921873
PAR ID:
10443720
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
INFORMS Journal on Data Science
ISSN:
2694-4022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a common problem occurring after using a statistical process control (SPC) method based on three-dimensional measurements: locate where on the surface of the part that triggered an out-of-control alarm there is a significant shape difference with respect to either an in-control part or its nominal (computer-aided design (CAD)) design. In the past, only registration-based solutions existed for this problem, which first orient and locate the part and its nominal design under the same frame of reference. Recently, spectral Laplacian methods have been proposed for the SPC of discrete parts and their measured surface meshes. These techniques provide an intrinsic solution to the SPC problem: that is, a solution exclusively based on data whose coordinates lie on the surfaces without making reference to their ambient space, thus avoiding registration. Registration-free methods avoid the computationally expensive, nonconvex registration step needed to align the parts as required by previous methods, eliminating registration errors, and they are important in industry because of the increasing use of portable noncontact scanners. In this paper, we first present a new registration-free solution to the post-SPC part defect localization problem. The approach uses a spectral decomposition of the Laplace–Beltrami operator in order to construct a functional map between the CAD and measured manifolds to locate defects on the suspected part. A computational complexity analysis demonstrates the approach scales better with the mesh size and is more stable than a registration-based approach. To reduce computational expense, a new mesh partitioning algorithm is presented to find a region of interest on the surface of the part where defects are more likely to exist. The functional map method involves a large number of point-to-point comparisons based on noisy measurements, and a new statistical thresholding method used to filter the false positives in the underlying massive multiple comparisons problem is also provided.

    Funding: This research was partially funded by the National Science Foundation [Grant CMMI 2121625].

    Data Ethics & Reproducibility Note: There are no data ethics considerations. The code capsule is available on Code Ocean at https://codeocean.com/capsule/4615101/tree/v1 and in the e-Companion to this article (available https://doi.org/10.1287/ijds.2023.0030 ).

     
    more » « less
  2. Abstract

    In the 1980s, Nelson, Fraser, and Klemperer (NFK) published an experimentally derived structure of the ammonia dimer dramatically different from the structure determined computationally, which led these authors to the question “Does ammonia hydrogen bond?. This question has not yet been answered satisfactorily. To answer it, we have developed an ab initio potential energy surface (PES) for this dimer at the limits of the current computational capabilities and performed essentially exact six-dimensional calculations of the vibration-rotation-tunneling (VRT) spectra of NH3-NH3and ND3-ND3, obtaining an unprecedented agreement with experimental spectra. In agreement with other recent electronic structure calculations, the global minimum on the PES is in a substantially bent hydrogen-bonded configuration. Since the bottom of the PES is exceptionally flat, the dimer is extremely fluxional and the probability of finding it in configurations that are not hydrogen bonded is high. Nevertheless, the probability of hydrogen-bonded configurations is large enough to consider the ammonia dimer to be hydrogen bonded. We also show that NFK’s inference that the ammonia dimer is nearly rigid actually results from unusual cancellations between quantum effects that generate differences in spectra of different isotopologues.

     
    more » « less
  3. We consider the sequential anomaly detection problem in the one-class setting when only the anomalous sequences are available and propose an adversarial sequential detector by solving a minimax problem to find an optimal detector against the worst-case sequences from a generator. The generator captures the dependence in sequential events using the marked point process model. The detector sequentially evaluates the likelihood of a test sequence and compares it with a time-varying threshold, also learned from data through the minimax problem. We demonstrate our proposed method’s good performance using numerical experiments on simulations and proprietary large-scale credit card fraud data sets. The proposed method can generally apply to detecting anomalous sequences. History: W. Nick Street served as the senior editor for this article. Funding: This work is partially supported by the National Science Foundation [Grants CAREER CCF-1650913, DMS-1938106, and DMS-1830210] and grant support from Macy’s Technology. Data Ethics & Reproducibility Note: The code capsule is available on Code Ocean at https://doi.org/10.24433/CO.2329910.v1 and in the e-Companion to this article (available at https://doi.org/10.1287/ijds.2023.0026 ). 
    more » « less
  4. Refractory high entropy alloys (RHEAs) have gained significant attention in recent years as potential replacements for Ni-based superalloys in gas turbine applications. Improving their properties, such as their high-temperature yield strength, is crucial to their success. Unfortunately, exploring this vast chemical space using exclusively experimental approaches is impractical due to the considerable cost of the synthesis, processing, and testing of candidate alloys, particularly at operation-relevant temperatures. On the other hand, the lack of reasonably accurate predictive property models, especially for high-temperature properties, makes traditional Integrated Computational Materials Engineering (ICME) methods inadequate. In this paper, we address this challenge by combining machine-learning models, easy-to-implement physics-based models, and inexpensive proxy experimental data to develop robust and fast-acting models using the concept of Bayesian updating. The framework combines data from one of the most comprehensive databases on RHEAs (Borg et al., 2020) with one of the most widely used physics-based strength models for BCC-based RHEAs (Maresca and Curtin, 2020) into a compact predictive model that is significantly more accurate than the state-of-the-art. This model is cross-validated, tested for physics-informed extrapolation, and rigorously benchmarked against standard Gaussian process regressors (GPRs) in a toy Bayesian optimization problem. Such a model can be used as a tool within ICME frameworks to screen for RHEAs with superior high-temperature properties. The code associated with this work is available at: https://codeocean.com/capsule/7849853/tree/v2. 
    more » « less
  5. Abstract

    A typical task for classical and quantum computing in chemistry is finding a potential energy surface (PES) along a reaction coordinate, which involves solving the quantum chemistry problem for many points along the reaction path. Developing algorithms to accomplish this task on quantum computers has been an active area of development, yet finding all the relevant eigenstates along the reaction coordinate remains a difficult problem, and determining PESs is thus a costly proposal. In this paper, we demonstrate the use of a eigenvector continuation—a subspace expansion that uses a few eigenstates as a basis—as a tool for rapidly exploring PESs. We apply this to determining the binding PES or torsion PES for several molecules of varying complexity. In all cases, we show that the PES can be captured using relatively few basis states; suggesting that a significant amount of (quantum) computational effort can be saved by making use of already calculated ground states in this manner.

     
    more » « less