skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Circuit Complexity in Topological Quantum Field Theory
Abstract Quantum circuit complexity has played a central role in recent advances in holography and many‐body physics. Within quantum field theory, it has typically been studied in a Lorentzian (real‐time) framework. In a departure from standard treatments, we aim to quantify the complexity of the Euclidean path integral. In this setting, there is no clear separation between space and time, and the notion of unitary evolution on a fixed Hilbert space no longer applies. As a proof of concept, we argue that the pants decomposition provides a natural notion of circuit complexity within the category of 2‐dimensional bordisms and use it to formulate the circuit complexity of states and operators in 2‐dimensional topological quantum field theory. We comment on analogies between our formalism and others in quantum mechanics, such as tensor networks and second quantization.  more » « less
Award ID(s):
2210562
PAR ID:
10443979
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Fortschritte der Physik
Volume:
70
Issue:
9-10
ISSN:
0015-8208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kiltz, E. (Ed.)
    The classical (parallel) black pebbling game is a useful abstraction which allows us to analyze the resources (space, space-time, cumulative space) necessary to evaluate a function f with a static data-dependency graph G. Of particular interest in the field of cryptography are data-independent memory-hard functions fG,H which are defined by a directed acyclic graph (DAG) G and a cryptographic hash function H. The pebbling complexity of the graph G characterizes the amortized cost of evaluating fG,H multiple times as well as the total cost to run a brute-force preimage attack over a fixed domain X, i.e., given y∈{0,1}∗ find x∈X such that fG,H(x)=y. While a classical attacker will need to evaluate the function fG,H at least m=|X| times a quantum attacker running Grover’s algorithm only requires O(m−−√) blackbox calls to a quantum circuit CG,H evaluating the function fG,H. Thus, to analyze the cost of a quantum attack it is crucial to understand the space-time cost (equivalently width times depth) of the quantum circuit CG,H. We first observe that a legal black pebbling strategy for the graph G does not necessarily imply the existence of a quantum circuit with comparable complexity—in contrast to the classical setting where any efficient pebbling strategy for G corresponds to an algorithm with comparable complexity for evaluating fG,H. Motivated by this observation we introduce a new parallel reversible pebbling game which captures additional restrictions imposed by the No-Deletion Theorem in Quantum Computing. We apply our new reversible pebbling game to analyze the reversible space-time complexity of several important graphs: Line Graphs, Argon2i-A, Argon2i-B, and DRSample. Specifically, (1) we show that a line graph of size N has reversible space-time complexity at most O(N^{1+2/√logN}). (2) We show that any (e, d)-reducible DAG has reversible space-time complexity at most O(Ne+dN2^d). In particular, this implies that the reversible space-time complexity of Argon2i-A and Argon2i-B are at most O(N^2 loglogN/√logN) and O(N^2/(log N)^{1/3}), respectively. (3) We show that the reversible space-time complexity of DRSample is at most O((N^2loglog N)/log N). We also study the cumulative pebbling cost of reversible pebblings extending a (non-reversible) pebbling attack of Alwen and Blocki on depth-reducible graphs. 
    more » « less
  2. The dynamics of quantum systems unfolds within a subspace of the state space or operator space, known as the Krylov space. This review presents the use of Krylov subspace methods to provide an efficient description of quantum evolution and quantum chaos, with emphasis on nonequilibrium phenomena of many-body systems with a large Hilbert space. It provides a comprehensive update of recent developments, focused on the quantum evolution of operators in the Heisenberg picture as well as pure and mixed states. It further explores the notion of Krylov complexity and associated metrics as tools for quantifying operator growth, their bounds by generalized quantum speed limits, the universal operator growth hypothesis, and its relation to quantum chaos, scrambling, and generalized coherent states. A comparison of several generalizations of the Krylov construction for open quantum systems is presented. A closing discussion addresses the application of Krylov subspace methods in quantum field theory, holog- raphy, integrability, quantum control, and quantum computing, as well as current open problems. 
    more » « less
  3. Circuit complexity, defined as the minimum circuit size required for implementing a particular Boolean computation, is a foundational concept in computer science. Determining circuit complexity is believed to be a hard computational problem. Recently, in the context of black holes, circuit complexity has been promoted to a physical property, wherein the growth of complexity is reflected in the time evolution of the Einstein-Rosen bridge (“wormhole”) connecting the two sides of an anti-de Sitter “eternal” black hole. Here, we are motivated by an independent set of considerations and explore links between complexity and thermodynamics for functionally equivalent circuits, making the physics-inspired approach relevant to real computational problems, for which functionality is the key element of interest. In particular, our thermodynamic framework provides an alternative perspective on the obfuscation of programs of arbitrary length—an important problem in cryptography—as thermalization through recursive mixing of neighboring sections of a circuit, which can be viewed as the mixing of two containers with “gases of gates.” This recursive process equilibrates the average complexity and leads to the saturation of the circuit entropy, while preserving functionality of the overall circuit. The thermodynamic arguments hinge on ergodicity in the space of circuits which we conjecture is limited to disconnected ergodic sectors due to fragmentation. The notion of fragmentation has important implications for the problem of circuit obfuscation as it implies that there are circuits of same size and functionality that cannot be connected via a polynomial number of local moves. Furthermore, we argue that fragmentation is unavoidable unless the complexity classes NP and coNP coincide, a statement that implies the collapse of the polynomial hierarchy of computational complexity theory to its first level. 
    more » « less
  4. We introduce a notion of complexity of diagrams (and, in particular, of objects and morphisms) in an arbitrary category, as well as a notion of complexity of functors between categories equipped with complexity functions. We discuss several examples of this new definition in categories of wide common interest such as finite sets, Boolean functions, topological spaces, vector spaces, semilinear and semialgebraic sets, graded algebras, affine and projective varieties and schemes, and modules over polynomial rings. We show that on one hand categorical complexity recovers in several settings classical notions of nonuniform computational complexity (such as circuit complexity), while on the other hand it has features that make it mathematically more natural. We also postulate that studying functor complexity is the categorical analog of classical questions in complexity theory about separating different complexity classes. 
    more » « less
  5. Guruswami, Venkatesan (Ed.)
    The Perebor (Russian for "brute-force search") conjectures, which date back to the 1950s and 1960s are some of the oldest conjectures in complexity theory. The conjectures are a stronger form of the NP ≠ P conjecture (which they predate) and state that for "meta-complexity" problems, such as the Time-bounded Kolmogorov complexity Problem, and the Minimum Circuit Size Problem, there are no better algorithms than brute force search. In this paper, we disprove the non-uniform version of the Perebor conjecture for the Time-Bounded Kolmogorov complexity problem. We demonstrate that for every polynomial t(⋅), there exists of a circuit of size 2^{4n/5+o(n)} that solves the t(⋅)-bounded Kolmogorov complexity problem on every instance. Our algorithm is black-box in the description of the Universal Turing Machine U employed in the definition of Kolmogorov Complexity and leverages the characterization of one-way functions through the hardness of the time-bounded Kolmogorov complexity problem of Liu and Pass (FOCS'20), and the time-space trade-off for one-way functions of Fiat and Naor (STOC'91). We additionally demonstrate that no such black-box algorithm can have circuit size smaller than 2^{n/2-o(n)}. Along the way (and of independent interest), we extend the result of Fiat and Naor and demonstrate that any efficiently computable function can be inverted (with probability 1) by a circuit of size 2^{4n/5+o(n)}; as far as we know, this yields the first formal proof that a non-trivial circuit can invert any efficient function. 
    more » « less