skip to main content

Title: Spontaneous Asymmetry of Chiral Magnetic Domains Within a Magnetic Field

Chiral magnetic domains are topological spin textures in which the Dzyaloshinskii–Moriya interaction assigns a given chirality to the domain walls. Notably, despite rapid progress in chiral magnetic research, one fundamental issue that remains unclear is how the chirality of chiral magnetic domains change as a magnetic field deforms the spin texture. Using spin‐polarized low energy electron microscopy, the evolution of Fe/Ni chiral magnetic stripe domains are investigated in single‐crystalline Fe/Ni/Cu/Co/Cu(001) multilayers in which the interlayer magnetic coupling between the Co and Fe/Ni films serves as an in‐plane magnetic field. Contrary to theoretical works, it is found that the chirality of the Néel walls results in a parallel alignment of the magnetic stripes with the in‐plane magnetic field direction. The transformation of chiral Néel walls into achiral Bloch walls can be precisely controlled by tuning the Cu spacer layer thickness. In addition, the domain wall exhibits a spontaneous asymmetry within the in‐plane magnetic field, leading to an unbalanced chirality between the left‐handed and right‐handed Bloch walls. These new results foster a better understanding of the chiral domain properties within a magnetic field.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chiral magnets have recently emerged as hosts for topological spin textures and related transport phenomena, which can find use in next-generation spintronic devices. The coupling between structural chirality and noncollinear magnetism is crucial for the stabilization of complex spin structures such as magnetic skyrmions. Most studies have been focused on the physical properties in homochiral states favored by crystal growth and the absence of long-ranged interactions between domains of opposite chirality. Therefore, effects of the high density of chiral domains and domain boundaries on magnetic states have been rarely explored so far. Herein, we report layered heterochiral Cr1/3TaS2, exhibiting numerous chiral domains forming topological defects and a nanometer-scale helimagnetic order interlocked with the structural chirality. Tuning the chiral domain density, we discovered a macroscopic topological magnetic texture inside each chiral domain that has an appearance of a spiral magnetic superstructure composed of quasiperiodic Néel domain walls. The spirality of this object can have either sign and is decoupled from the structural chirality. In weak, in-plane magnetic fields, it transforms into a nonspiral array of concentric ring domains. Numerical simulations suggest that this magnetic superstructure is stabilized by strains in the heterochiral state favoring noncollinear spins. Our results unveil topological structure/spin couplings in a wide range of different length scales and highly tunable spin textures in heterochiral magnets.

    more » « less
  2. Spin-orbit torque (SOT) driven domain wall motion has attracted significant attention as the basis for a variety of spintronic devices due to its potential use as a high speed, low power means to manipulate the magnetic state of an object. While most previous attention has focused on ultrathin films wherein the material thickness is significantly less than the magnetic exchange length, recent reports have suggested unique dynamics may be achieved in intermediate and high thickness films. We used micromagnetic modelling to explore the role of the vertically non-uniform spin textures associated with the domain wall in nanowires of varying thickness on SOT driven domain wall motion. We found large velocity asymmetries between Bloch chiralities near the current density required for reversal of the Bloch component of the magnetization and linked these asymmetries to a gradual reorientation of the domain wall structure which drives a non-negligible, chiral Néel component of the domain wall. We further explored the influence of saturation magnetization, film thickness, the Dzyaloshinskii-Moriya interaction, and in-plane fields on domain wall dynamics. These results provide a framework for the development of SOT based devices based on domain wall motion in nanowires beyond the ultrathin film limit. 
    more » « less
  3. Abstract Second-harmonic Hall voltage (SHV) measurement method has been widely used to characterize the strengths of spin–orbit torques (SOTs) in heavy metal/ferromagnet thin films saturated in the single-domain regime. Here, we show that the magnetic anisotropy of a W/Pt/Co trilayer can be robustly tuned from in-plane to out-of-plane by varying W, Pt, or Co thicknesses. Moreover, in samples with easy-cone anisotropy, SHV measurements exhibit anomalous ‘humps’ in the multidomain regime accessed by applying a nearly out-of-plane external magnetic field. These hump features can only be explained as a result of the formation of Néel-type domain walls, efficiently driven by nevertheless small SOTs in this double heavy metal heterostructure with canceling spin Hall angles. 
    more » « less
  4. Abstract

    Observation of a new type of nanoscale ferroelectric domains, termed as “bubble domains”—laterally confined spheroids of sub‐10 nm size with local dipoles self‐aligned in a direction opposite to the macroscopic polarization of a surrounding ferroelectric matrix—is reported. The bubble domains appear in ultrathin epitaxial PbZr0.2Ti0.8O3/SrTiO3/PbZr0.2Ti0.8O3ferroelectric sandwich structures due to the interplay between charge and lattice degrees of freedom. The existence of the bubble domains is revealed by high‐resolution piezoresponse force microscopy (PFM), and is corroborated by aberration‐corrected atomic‐resolution scanning transmission electron microscopy mapping of the polarization displacements. An incommensurate phase and symmetry breaking is found within these domains resulting in local polarization rotation and hence impart a mixed Néel–Bloch‐like character to the bubble domain walls. PFM hysteresis loops for the bubble domains reveal that they undergo an irreversible phase transition to cylindrical domains under the electric field, accompanied by a transient rise in the electromechanical response. The observations are in agreement with ab‐initio‐based calculations, which reveal a very narrow window of electrical and elastic parameters that allow the existence of bubble domains. The findings highlight the richness of polar topologies possible in ultrathin ferroelectric structures and bring forward the prospect of emergent functionalities due to topological transitions.

    more » « less
  5. Abstract

    Herein, the experimental observation of micrometer‐scale magnetic skyrmions at room temperature in several Pt/Co‐based thin film heterostructures designed to possess low exchange stiffness, perpendicular magnetic anisotropy, and a modest interfacial Dzyaloshinskii–Moriya interaction (iDMI) is reported. It is found both experimentally and by micromagnetic and analytic modeling that a low exchange stiffness and modest iDMI eliminates the energetic penalty associated with forming domain walls in thin films. When the domain wall energy density approaches negative values, the remanent morphology transitions from a uniform state to labyrinthine stripes. A low exchange stiffness, indicated by a sub‐400 K Curie temperature, is achieved in Pt/Co, Pt/Co/Ni, and Pt/Co/Ni/Re structures by reducing the Co thickness to the ultrathin limit (<0.3 nm). Similar effects occur in thicker Pt/Co/NixCu1−xstructures when the Ni layer is alloyed with Cu. At this transition in domain morphology, skyrmion phases are stabilized by small (<1 mT), perpendicular magnetic fields, and skyrmion motion in response to spin–orbit torque is observed. While the temperature and thickness‐induced morphological phase transitions observed are similar to the well‐studied spin reorientation transition that occurs in the ultrathin limit, the underlying energy balances are substantially modified by the presence of an iDMI.

    more » « less