skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: WMO evaluation of northern hemispheric coldest temperature: −69.6 °C at Klinck, Greenland, 22 December 1991
Abstract A World Meteorological Organization (WMO) Extremes Evaluation Committee investigated an observation of −69.6 °C by Klinck Automatic Weather Station (AWS) in Greenland on 22 December 1991 as the lowest temperature observed in Greenland, thereby making it the lowest recorded near‐surface air temperature for the Northern and Western Hemispheres and for WMO Region VI. The committee examined the metadata and observations of the station as well as the regional synoptic circulation. The committee concluded that the observation is credible in terms of instrument calibration, monitoring of the station and the synoptic situation. Consequently, the WMO Rapporteur accepted the observation as the officially lowest observed near‐surface air temperature for Greenland, the Northern and Western Hemisphere and for WMO Region VI. As a supplement to this investigation, the committee also recommends that opportunities be investigated such that AWS data from Greenland can be efficiently incorporated into real‐time weather forecasts and hence into reanalysis datasets.  more » « less
Award ID(s):
1543305
PAR ID:
10444046
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Volume:
147
Issue:
734
ISSN:
0035-9009
Page Range / eLocation ID:
p. 21-29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Two reports of Antarctic Region potential new record high temperature observations (18.3°C, 6 February 2020 at Esperanza station and 20.8°C, 9 February 2020 at a Brazilian automated permafrost monitoring station on Seymour Island) were evaluated by a World Meteorological Organization (WMO) panel of atmospheric scientists. The latter figure was reported as 20.75°C in the media. The panel considered the synoptic situation and instrumental setups. It determined that a large high-pressure system over the area created föhn conditions and resulted in local warming for both situations. Examination of the data and metadata of the Esperanza station observation revealed no major concerns. However, analysis of data and metadata of the Seymour Island permafrost monitoring station indicated that an improvised radiation shield led to a demonstrable thermal bias error for the temperature sensor. Consequently, the WMO has accepted the 18.3° C value for 12 noon (LST) 6 February 2020 [1500 UTC 6 February 2020] at the Argentine Esperanza station as the new “Antarctic Region [continental, including mainland and surrounding islands] highest temperature recorded observation” but rejected the 20.8° C observation at the Brazilian automated Seymour Island permafrost monitoring station as biased. The committee strongly emphasizes the permafrost monitoring station was not badly designed for its purpose, but the project investigators were forced to improvise a non-optimal radiation shield after losing the original covering. Secondly, with regard to media dissemination of this type of information, the committee urges increased caution in early announcements as many media outlets often tend to sensationalize and mischaracterize potential records. 
    more » « less
  2. Abstract The interior of Dronning Maud Land (DML) in East Antarctica is one of the most data-sparse regions of Antarctica for studying climate change. A monthly mean near-surface temperature dataset for the last 30 years has been compiled from the historical records from automatic weather stations (AWSs) at three sites in the region (Mizuho, Relay Station, and Dome Fuji). Multiple AWSs have been installed along the route to Dome Fuji since the 1990s, and observations have continued to the present day. The use of passive-ventilated radiation shields for the temperature sensors at the AWSs may have caused a warm bias in the temperature measurements, however, due to insufficient ventilation in the summer, when solar radiation is high and winds are low. In this study, these warm biases are quantified by comparison with temperature measurements with an aspirated shield and subsequently removed using a regression model. Systematic error resulting from changes in the sensor height due to accumulating snow was insignificant in our study area. Several other systematic errors occurring in the early days of the AWS systems were identified and corrected. After the corrections, multiple AWS records were integrated to create a time series for each station. The percentage of missing data over the three decades was 21% for Relay Station and 28% for Dome Fuji. The missing rate at Mizuho was 49%, more than double that at Relay Station. These new records allow for the study of temperature variability and change in DML, where climate change has so far been largely unexplored. Significance StatementAntarctic climate change has been studied using temperature data at staffed stations. The staffed stations, however, are mainly located on the Antarctic Peninsula and in the coastal regions. Climate change is largely unknown in the Antarctic plateau, particularly in the western sector of the East Antarctic Plateau in areas such as the interior of Dronning Maud Land (DML). To fill the data gap, this study presents a new dataset of monthly mean near-surface climate data using historical observations from three automatic weather stations (AWSs). This dataset allows us to study temperature variability and change over a data-sparse region where climate change has been largely unexplored. 
    more » « less
  3. To monitor meteorologic conditions on San Salvador Island throughout the duration of our well and lake instrumentation campaigns (see associated datasets), we installed an automatic weather station (AWS) at the Gerace Research Centre (GRC) located on the island's northern shore. The GRC weather station was equipped with a HOBO U30 Data Logger that recorded sensor measurements at a 15-minute sampling rate from November 2017 through October 2019. The AWS measured air temperature, and relative humidity with a Temperature/RH Smart Sensor (S-WSB-M003) installed within a solar radiation shield to prevent overheating. Rainfall was measured with a HOBO/Onset Rain Gauge Smart Sensor that using a tipping bucket mechanism mounted on a stainless steel shaft with brass bearings within aluminum housing to monitor rainfall rates up to 12.7 cm per hour. Atmospheric pressure was measured using a Barometric Pressure Smart Sensor within weatherproof housing with an accuracy of +/- 3.0 mbar, a resolution of 1.0 mbar, and a measurement range of 660-1070 mbar. Incoming shortwave solar radiation was measured with a silicon pyranometer (Solar Radiation Smart Sensor) mounted onto the weather station using the Onset Light Sensor Bracket. Data gaps due to sensor failure or proceeding sensor addition to the weather station producing null values are filled with "NaN" (i.e., not a number). 
    more » « less
  4. Abstract Atmospheric rivers (ARs) reaching high-latitudes in summer contribute to the majority of climatological poleward water vapor transport into the Arctic. This transport has exhibited long term changes over the past decades, which cannot be entirely explained by anthropogenic forcing according to ensemble model responses. Here, through observational analyses and model experiments in which winds are adjusted to match observations, we demonstrate that low-frequency, large-scale circulation changes in the Arctic play a decisive role in regulating AR activity and thus inducing the recent upsurge of this activity in the region. It is estimated that the trend in summertime AR activity may contribute to 36% of the increasing trend of atmospheric summer moisture over the entire Arctic since 1979 and account for over half of the humidity trends in certain areas experiencing significant recent warming, such as western Greenland, northern Europe, and eastern Siberia. This indicates that AR activity, mostly driven by strong synoptic weather systems often regarded as stochastic, may serve as a vital mechanism in regulating long term moisture variability in the Arctic. 
    more » « less
  5. Abstract. When quantifying temperature changes induced by deforestation (e.g., cooling in high latitudes, warming in low latitudes), satellite data, in situ observations, and climate models differ concerning the height at which the temperature is typically measured/simulated. In this study the effects of deforestation on surface temperature, near-surface air temperature, and lower atmospheric temperature are compared by analyzing the biogeophysical temperature effects of large-scale deforestation in the Max Planck Institute Earth System Model (MPI-ESM) separately for local effects (which are only apparent at the location of deforestation) and nonlocal effects (which are also apparent elsewhere). While the nonlocal effects (cooling in most regions) influence the temperature of the surface and lowest atmospheric layer equally, the local effects (warming in the tropics but a cooling in the higher latitudes) mainly affect the temperature of the surface.In agreement with observation-based studies, the local effects on surface and near-surface air temperature respond differently in the MPI-ESM, both concerning the magnitude of local temperature changes and the latitude at which the local deforestation effects turn from a cooling to a warming (at 45–55∘ N for surface temperature and around 35∘ N for near-surface air temperature). Subsequently, our single-model results are compared to model data from multiple climate models from the Climate Model Intercomparison Project (CMIP5). This inter-model comparison shows that in the northern midlatitudes, both concerning the summer warming and winter cooling, near-surface air temperature is affected by the local effects only about half as strongly as surface temperature. This study shows that the choice of temperature variable has a considerable effect on the observed and simulated temperature change. Studies about the biogeophysical effects of deforestation must carefully choose which temperature to consider. 
    more » « less