skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phase stability and cation partitioning in compositionally complex rare earth aluminates and aluminate‐zirconate mixtures
Abstract Multicomponent oxides have received significant recent attention due to their potential for improved property tunability. In simple structures, compositionally complex oxides can be stabilized by increased configurational entropy and are sometimes called “high entropy” ceramics. In phases with multiple cation sublattices or complex stoichiometries, it is more difficult to achieve high configurational entropy. However, there is limited knowledge about the factors influencing stability and solubility limits in many systems. This study investigated the limits on the stability of rare earth (RE) aluminates containing mixtures of RE cations including Gd, La, Nd, Yb, and Y in cases where (i) a fixed RE:Al ratio attempts to constrain the material into a single‐phase aluminate or (ii) a two‐phase aluminate, and in equilibrium with RE zirconates that readily dissolve multiple RE3+. The results show that it is difficult to form single‐phase, equimolar mixed‐RE aluminates encompassing a range of RE3+sizes. Instead, the RE3+selectively partition into specific phases based on RE‐size trends in the constituent binary systems. The results are discussed in terms of the phase stability and cation partition trends and potential applications.  more » « less
Award ID(s):
2011401
PAR ID:
10444050
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
107
Issue:
3
ISSN:
0002-7820
Format(s):
Medium: X Size: p. 1760-1775
Size(s):
p. 1760-1775
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two new high-entropy ceramics (HECs) in the weberite and fergusonite structures, along with the unexpected formation of ordered pyrochlore phases with ultrahigh-entropy compositions and an abrupt pyrochlore-weberite transition, are discovered in a 21-component oxide system. While the Gibbs phase rule allows 21 equilibrium phases, 9 out of the 13 compositions examined possess single HEC phases (with ultrahigh ideal configurational entropies: ∼2.7 k B per cation or higher on one sublattice in most cases). Notably, (15RE 1/15 )(Nb 1/2 Ta 1/2 )O 4 possess a single monoclinic fergusonite (C2/ c ) phase, and (15RE 1/15 ) 3 (Nb 1/2 Ta 1/2 ) 1 O 7 form a single orthorhombic (C222 1 ) weberite phase, where 15RE 1/15 represents Sc 1/15 Y 1/15 La 1/15 Pr 1/15 Nd 1/15 Sm 1/15 Eu 1/15 Gd 1/15 Tb 1/15 Dy 1/15 Ho 1/15 Er 1/15 Tm 1/15 Yb 1/15 Lu 1/15 . Moreover, a series of eight (15RE 1/15 ) 2+ x (Ti 1/4 Zr 1/4 Ce 1/4 H 1/4 ) 2−2 x (Nb 1/2 Ta 1/2 ) x O 7 specimens all exhibit single phases, where a pyrochlore-weberite transition occurs within 0.75 < x < 0.8125. This cubic-to-orthorhombic transition does not change the temperature-dependent thermal conductivity appreciably, as the amorphous limit may have already been achieved in the ultrahigh-entropy 21-component oxides. These discoveries expand the diversity and complexity of HECs, towards many-component compositionally complex ceramics (CCCs) and ultrahigh-entropy ceramics. 
    more » « less
  2. Nanoscale complex metal oxides have transformed how technology is used around the world. A ubiquitous example is the class of electroreactive cathodes used in Li-ion batteries, found in portable electronics and electric cars. Lack of recycling infrastructure and financial drivers contribute to improper disposal, and ultimately, introduction of these materials into the environment. Outside of sealed operational conditions, it has been demonstrated that complex metal oxides can transform in the environment, and cause negative biological impact through leaching of cations into aqueous phases. Using a combined DFT and thermodynamics methodology, insights into the mechanism and driving forces of cation release can be studied at the molecular-level. Here, we describe design principles that can be drawn from previous collaborative research on complex metal oxide dissolution of the Li(Ni y Mn z Co 1−y−z )O 2 family of materials, and go on to posit ternary complex metal oxides in the delafossite structure type with controlled release behavior. Using equistoichiometric formulations in the delfossite structure, we use DFT and thermodynamics to model cation release. The release trends are discussed in terms of lattice stability, solution chemistry/solubility limits, and electronic/magnetic properties. Intercalation voltages are calculated and discussed as a predictive metric for potential functionality of the model materials. 
    more » « less
  3. null (Ed.)
    The degree to which the Earth’s mantle stores and cycles water in excess of the storage capacity of nominally anhydrous minerals is dependent upon the stability of hydrous phases under mantle-relevant pressures, temperatures, and compositions. Two hydrous phases, phase D and phase H, are stable to the pressures and temperatures of the Earth’s lower mantle, suggesting that the Earth’s lower mantle may participate in the cycling of water. We build on our prior work of density functional theory calculations on phase H with the stability, structure, and bonding of hydrous phases D, and we predict the aluminum partitioning with H in the Al 2 O 3 -SiO 2 -MgO-H 2 O system. We address the solid solutions through a statistical sampling of site occupancy and calculation of the partition function from the grand canonical ensemble. We show that each phase has a wide solid solution series between MgSi 2 O 6 H 2 -Al 2 SiO 6 H 2 and MgSiO 4 H 2 -2 δ AlOOH + SiO 2 , in which phase H is more aluminum rich than phase D at a given bulk composition. We predict that the addition of Al to both phases D and H stabilizes each phase to higher temperatures through additional configurational entropy. While we have shown that phase H does not exhibit symmetric hydrogen bonding at high pressure, we report here that phase D undergoes a gradual increase in the number of symmetric H-bonds beginning at ∼30 GPa, and it is only ∼50% complete at 60 GPa. 
    more » « less
  4. Abstract The rocksalt structured (Co,Cu,Mg,Ni,Zn)O entropy-stabilized oxide (ESO) exhibits a reversible phase transformation that leads to the formation of Cu-rich tenorite and Co-rich spinel secondary phases. Using atom probe tomography, kinetic analysis, and thermodynamic modeling, we uncover the nucleation and growth mechanisms governing the formation of these two secondary phases. We find that these phases do not nucleate directly, but rather they first form Cu-rich and Co-rich precursor phases, which nucleate in regions rich in Cu and cation vacancies, respectively. These precursor phases then grow through cation diffusion and exhibit a rocksalt-like crystal structure. The Cu-rich precursor phase subsequently transforms into the Cu-rich tenorite phase through a structural distortion-based transformation, while the Co-rich precursor phase transforms into the Co-rich spinel phase through a defect-mediated transformation. Further growth of the secondary phases is controlled by cation diffusion within the primary rocksalt phase, whose diffusion behavior resembles other common rocksalt oxides. Graphical abstract 
    more » « less
  5. Abstract High entropy oxides are a class of materials distinguished by the use of configurational entropy to drive material synthesis. These materials are being examined for their exciting physiochemical properties and hold promise in numerous fields, such as chemical sensing, electronics, and catalysis. Patterning and integration of high entropy materials into devices and platforms can be difficult due to their thermal sensitivity and incompatibility with many conventional thermally-based processing techniques. In this work, we present a laser-based technique, laser-induced thermal voxels, that combines the synthesis and patterning of high entropy oxides into a single process step, thereby allowing patterning of high entropy materials directly onto substrates. As a proof-of-concept, we target the synthesis and patterning of a well-characterized rock salt-phase high entropy oxide, (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O, as well as a spinel-phase high entropy oxide, (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)Cr2O4. We show through electron microscopy and x-ray analysis that the materials created are atomically homogenous and are primarily of the rock salt or spinel phase. These findings show the efficacy of laser induced thermal voxel processing for the synthesis and patterning of high entropy materials and enable new routes for integration of high entropy materials within microscale platform and devices. 
    more » « less