skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Temporal Effects of Monsoon Rainfall Pulses on Plant Available Nitrogen in a Chihuahuan Desert Grassland
Abstract

Drylands are often characterized by a pulse dynamics framework in which episodic rain events trigger brief pulses of biological activity and resource availability that regulate primary production. In the northern Chihuahuan Desert, growing season precipitation typically comes from monsoon rainstorms that stimulate soil microbial processes like decomposition, releasing inorganic nitrogen needed by plant processes. Compared to microbes, plants require greater amounts of soil moisture, typically from larger monsoon storms predicted to become less frequent and more intense in the future. Yet field‐based studies linking rainfall pulses with soil nutrient dynamics are rare. Consequently, little is known about how changes in rainfall patterns may affect plant available nitrogen in dryland soils, particularly across temporal scales. We measured daily and seasonal responses of soil inorganic nitrogen and related parameters to experimentally applied small frequent and large infrequent rain events throughout a summer growing season in a Chihuahuan Desert grassland. Contrary to long‐standing theories around resource pulse dynamics in drylands, nitrogen availability did not pulse following experimental rain events. Moreover, large infrequent events resulted in significantly less plant available nitrogen despite causing distinct pulses of increased soil moisture availability that persisted for several days. Overall, nitrogen availability increased over the growing season, especially following small frequent rain events that also stimulated some microbial ecoenzymatic activities. Our results suggest that projected changes in climate to fewer, larger rain events could significantly impact primary production in desert grasslands by decreasing plant available nitrogen when soil moisture is least limiting to plant growth.

 
more » « less
Award ID(s):
1856383 1655499
PAR ID:
10444138
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
127
Issue:
6
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The predicted intensification of the North American Monsoon is expected to alter growing season rainfall patterns in the southwestern United States. These patterns, which have historically been characterized by frequent small rain events, are anticipated to shift towards a more extreme precipitation regime consisting of fewer, but larger rain events. Furthermore, human activities are contributing to increased atmospheric nitrogen deposition throughout this dryland region.

    Alterations in rainfall size and frequency, along with changes in nitrogen availability, are likely to have significant consequences for above‐ground net primary production (ANPP) and plant community dynamics in drylands. The conceptual bucket model predicts that a shift towards fewer, but larger rain events could promote greater rates of ANPP in these regions by maintaining soil moisture availability above drought stress thresholds for longer periods during the growing season. However, only a few short‐term studies have tested this hypothesis, and none have explored the interaction between altered rainfall patterns and nitrogen enrichment.

    To address this knowledge gap, we conducted a 14‐year rainfall addition and nitrogen fertilization experiment in a northern Chihuahuan Desert grassland to explore the long‐term impacts of changes in monsoon rainfall size and frequency, along with chronic nitrogen enrichment, on ANPP (measured as peak biomass) and plant community dynamics.

    Contrary to bucket model predictions, small frequent rain events promoted comparable rates of ANPP to large infrequent rain events in the absence of nitrogen enrichment. It was only when nitrogen limitation was alleviated that large infrequent rain events resulted in the greatest ANPP. Furthermore, we found that nitrogen enrichment had the greatest impact on plant community composition under the small frequent rainfall regime.

    Synthesis. Our long‐term field experiment highlights limitations of the bucket model by demonstrating that water and nitrogen availability sequentially limit dryland ecological processes. Specifically, our findings suggest that while water availability is the primary limiting factor for above‐ground net primary production in these ecosystems, nitrogen limitation becomes increasingly important when water is not limiting. Moreover, our findings reveal that small frequent rain events play an important but underappreciated role in driving dryland ecosystem dynamics.

     
    more » « less
  2. Microbial activity in drylands is mediated by the magnitude and frequency of growing season rain events that will shift as climate change progresses. Nitrogen is often co-limiting with water availability to dryland plants, and thus we investigated how microbes important to the nitrogen (N) cycle and soil N availability varied temporally and spatially in the context of a long-term rainfall variability experiment in the northern Chihuahuan Desert. Specifically, we assessed biological soil crust (biocrust) chlorophyll content, fungal abundance, and inorganic N in soils adjacent to individuals of the grassland foundation species, Bouteloua eriopoda, and in the unvegetated interspace at multiple time points associated with an experimental monsoon rain treatment. Treatments included small weekly (5 mm) or large monthly (20 mm) rain events, which had been applied during the summer monsoon for nine years prior to our sampling. Additionally, we evaluated target plant C:N ratios and added 15 N-glutamate to biocrusts to determine potential for nutrient transport to B. eriopoda. Biocrust chlorophyll was up to 67% higher in the small weekly or large monthly rainfall regimes compared to ambient controls. Fungal biomass was 57% lower in soil interspaces than adjacent to plants but did not respond to rainfall regime treatments. Ammonium and nitrate concentrations near plants declined through the sampling period but varied little in soil interspaces. There was limited movement of 15 N from interspace biocrusts to leaves but high 15 N retention in the soils even after additional ambient and experimental rain events. Plant C:N ratio was unaffected by rainfall treatments. The long-term alteration in rainfall regime in this experiment did not change how short-term microbial abundance or N availability responded to the magnitude or frequency of events, suggesting a limited response of N availability to future climate change. 
    more » « less
  3. Abstract

    In dryland soils, spatiotemporal variation in surface soils (0–10 cm) plays an important role in the function of the “critical zone” that extends from canopy to groundwater. Understanding connections between soil microbes and biogeochemical cycling in surface soils requires repeated multivariate measurements of nutrients, microbial abundance, and microbial function. We examined these processes in resource islands and interspaces over a two‐month period at a Chihuahuan Desert bajada shrubland site. We collected soil inProsopis glandulosa(honey mesquite),Larrea tridentata(creosote bush), and unvegetated (interspace) areas to measure soil nutrient concentrations, microbial biomass, and potential soil enzyme activity. We monitored the dynamics of these belowground processes as soil conditions dried and then rewetted due to rainfall. Most measured variables, including inorganic nutrients, microbial biomass, and soil enzyme activities, were greater under shrubs during both wet and dry periods, with the highest magnitudes under mesquite followed by creosote bush and then interspace. One exception was nitrate, which was highly variable and did not show resource island patterns. Temporally, rainfall pulses were associated with substantial changes in soil nutrient concentrations, though resource island patterns remained consistent during all phases of the soil moisture pulse. Microbial biomass was more consistent than nutrients, decreasing only when soils were driest. Potential enzyme activities were even more consistent and did not decline in dry periods, potentially helping to stimulate observed pulses in CO2efflux following rain events observed at a co‐located eddy flux tower. These results indicate a critical zone with organic matter cycling patterns consistently elevated in shrub resource islands (which varied by shrub species), high decomposition potential that limits soil organic matter accumulation across the landscape, and nitrate fluxes that are decoupled from the organic matter pathways.

     
    more » « less
  4. Abstract

    Future climates will alter the frequency and size of rain events in drylands, potentially affecting soil microbes that generate carbon feedbacks to climate, but field tests are rare. Topsoils in drylands are commonly colonized by biological soil crusts (biocrusts), photosynthesis‐based communities that provide services ranging from soil fertilization to stabilization against erosion. We quantified responses of biocrust microbial communities to 12 years of altered rainfall regimes, with 60 mm of additional rain per year delivered either as small (5 mm) weekly rains or large (20 mm) monthly rains during the summer monsoon season. Rain addition promoted microbial diversity, suppressed the dominant cyanobacterium,Microcoleus vaginatus, and enhanced nitrogen‐fixing taxa, but did not consistently increase microbial biomass. The addition of many small rain events increased microbial biomass, whereas few, large events did not. These results alter the physiological paradigm that biocrusts are most limited by the amount of rainfall and instead predict that regimes enriched in small rain events will boost cyanobacterial biocrusts and enhance their beneficial services to drylands.

     
    more » « less
  5. The Monsoon Rainfall Manipulation Experiment (MRME) is designed to understand changes in ecosystem structure and function of a semiarid grassland caused by increased precipitation variability, by altering rainfall pulses, and thus soil moisture, that drive primary productivity, community composition, and ecosystem functioning. The overarching hypothesis being tested is that changes in event size and frequency will alter grassland productivity, ecosystem processes, and plant community dynamics. Treatments include (1) a monthly addition of 20 mm of rain in addition to ambient, and a weekly addition of 5 mm of rain in addition to ambient during the months of July, August and September. We predict that soil N availability with interact with rainfall event size to alter net primary productivity during the summer monsoon. Specifically, productivity will be higher on fertilized relative to control plots, and productivity will be highest on N addition plots in treatments with a small number of large events because these events infiltrate deeper and soil moisture is available longer following large compared to small events. 
    more » « less