Machine learning (ML) training is commonly parallelized using data parallelism. A fundamental limitation of data parallelism is that conflicting (concurrent) parameter accesses during ML training usually diminishes or even negates the benefits provided by additional parallel compute resources. Although it is possible to avoid conflicting parameter accesses by carefully scheduling the computation, existing systems rely on programmer manual parallelization and it remains a question when such parallelization is possible. We present Orion, a system that automatically parallelizes serial imperative ML programs on distributed shared memory. The core of Orion is a static dependence analysis mechanism that determines when dependence-preserving parallelization is effective and maps a loop computation to an optimized distributed computation schedule. Our evaluation shows that for a number of ML applications, Orion can parallelize a serial program while preserving critical dependences and thus achieve a significantly faster convergence rate than data-parallel programs and a matching convergence rate and comparable computation throughput to state-of-the-art manual parallelizations including model-parallel programs.
more »
« less
SPLENDID: Supporting Parallel LLVM-IR Enhanced Natural Decompilation for Interactive Development
Manually writing parallel programs is difficult and error-prone. Automatic parallelization could address this issue, but profitability can be limited by not having facts known only to the programmer. A parallelizing compiler that collaborates with the programmer can increase the coverage and performance of parallelization while reducing the errors and overhead associated with manual parallelization. Unlike collaboration involving analysis tools that report program properties or make parallelization suggestions to the programmer, decompiler-based collaboration could leverage the strength of existing parallelizing compilers to provide programmers with a natural compiler-parallelized starting point for further parallelization or refinement. Despite this potential, existing decompilers fail to do this because they do not generate portable parallel source code compatible with any compiler of the source language. This paper presents SPLENDID, an LLVM-IR to C/OpenMP decompiler that enables collaborative parallelization by producing standard parallel OpenMP code. Using published manual parallelization of the PolyBench benchmark suite as a reference, SPLENDID's collaborative approach produces programs twice as fast as either Polly-based automatic parallelization or manual parallelization alone. SPLENDID's portable parallel code is also more natural than that from existing decompilers, obtaining a 39x higher average BLEU score.
more »
« less
- PAR ID:
- 10444171
- Date Published:
- Journal Name:
- International Conference on Architectural Support for Programming Languages and Operating Systems
- Volume:
- 3
- Page Range / eLocation ID:
- 679 to 693
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computer scientists and programmers face the difficultly of improving the scalability of their applications while using conventional programming techniques only. As a base-line hypothesis of this paper we assume that an advanced runtime system can be used to take full advantage of the available parallel resources of a machine in order to achieve the highest parallelism possible. In this paper we present the capabilities of HPX - a distributed runtime system for parallel applications of any scale - to achieve the best possible scalability through asynchronous task execution [1]. OP2 is an active library which provides a framework for the parallel execution for unstructured grid applications on different multi-core/many-core hardware architectures [2]. OP2 generates code which uses OpenMP for loop parallelization within an application code for both single-threaded and multi-threaded machines. In this work we modify the OP2 code generator to target HPX instead of OpenMP, i.e. port the parallel simulation backend of OP2 to utilize HPX. We compare the performance results of the different parallelization methods using HPX and OpenMP for loop parallelization within the Airfoil application. The results of strong scaling and weak scaling tests for the Airfoil application on one node with up to 32 threads are presented. Using HPX for parallelization of OP2 gives an improvement in performance by 5%-21%. By modifying the OP2 code generator to use HPX's parallel algorithms, we observe scaling improvements by about 5% as compared to OpenMP. To fully exploit the potential of HPX, we adapted the OP2 API to expose a future and dataflow based programming model and applied this technique for parallelizing the same Airfoil application. We show that the dataflow oriented programming model, which automatically creates an execution tree representing the algorithmic data dependencies of our application, improves the overall scaling results by about 21% compared to OpenMP. Our results show the advantage of using the asynchronous programming model implemented by HPX.more » « less
-
Automatic parallelizing compilers are often constrained in their transformations because they must conservatively respect data dependences within the program. Developers, on the other hand, often take advantage of domain-specific knowledge to apply transformations that modify data dependences but respect the application's semantics. This creates a semantic gap between the parallelism extracted automatically by compilers and manually by developers. Although prior work has proposed programming language extensions to close this semantic gap, their relative contribution is unclear and it is uncertain whether compilers can actually achieve the same performance as manually parallelized code when using them. We quantify this semantic gap in a set of sequential and parallel programs and leverage these existing programming-language extensions to empirically measure the impact of closing it for an automatic parallelizing compiler. This lets us achieve an average speedup of 12.6× on an Intel-based 28-core machine, matching the speedup obtained by the manually parallelized code. Further, we apply these extensions to widely used sequential system tools, obtaining 7.1× speedup on the same system.more » « less
-
Modern programming languages offer special syntax and semantics for logical fork-join parallelism in the form of parallel loops, allowing them to be nested, e.g., a parallel loop within another parallel loop. This expressiveness comes at a price, however: on modern multicore systems, realizing logical parallelism results in overheads due to the creation and management of parallel tasks, which can wipe out the benefits of parallelism. Today, we expect application programmers to cope with it by manually tuning and optimizing their code. Such tuning requires programmers to reason about architectural factors hidden behind layers of software abstractions, such as task scheduling and load balancing. Managing these factors is particularly challenging when workloads are irregular because their performance is input-sensitive. This paper presents HBC, the first compiler that translates C/C++ programs with high-level, fork-join constructs (e.g., OpenMP) to binaries capable of automatically controlling the cost of parallelism and dealing with irregular, input-sensitive workloads. The basis of our approach is Heartbeat Scheduling, a recent proposal for automatic granularity control, which is backed by formal guarantees on performance. HBC binaries outperform OpenMP binaries for workloads for which even entirely manual solutions struggle to find the right balance between parallelism and its costs.more » « less
-
Much software, whether beneficent or malevolent, is distributed only as binaries, sans source code. Absent source code, understanding binaries' behavior can be quite challenging, especially when compiled under higher levels of compiler optimization. These optimizations can transform comprehensible, ``natural" source constructions into something entirely unrecognizable. Reverse engineering binaries, especially those suspected of being malevolent or guilty of intellectual property theft, are important and time-consuming tasks. There is a great deal of interest in tools to ``decompile" binaries back into more natural source code to aid reverse engineering. Decompilation involves several desirable steps, including recreating source-language constructions, variable names, and perhaps even comments. One central step in creating binaries is optimizing function calls, using steps such as inlining. Recovering these (possibly inlined) function calls from optimized binaries is an essential task that most state-of-the-art decompiler tools try to do but do not perform very well. In this paper, we evaluate a supervised learning approach to the problem of recovering optimized function calls. We leverage open-source software and develop an automated labeling scheme to generate a reasonably large dataset of binaries labeled with actual function usages. We augment this large but limited labeled dataset with a pre-training step, which learns the decompiled code statistics from a much larger unlabeled dataset. Thus augmented, our learned labeling model can be combined with an existing decompilation tool, Ghidra, to achieve substantially improved performance in function call recovery, especially at higher levels of optimization.more » « less
An official website of the United States government

