skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Leveraging Large Language Models for Multiple Choice Question Answering
While large language models (LLMs) like GPT-3 have achieved impressive results on multiple choice question answering (MCQA) tasks in the zero, one, and few-shot settings, they generally lag behind the MCQA state of the art (SOTA). MCQA tasks have traditionally been presented to LLMs like cloze tasks. An LLM is conditioned on a question (without the associated answer options) and its chosen option is the one assigned the highest probability after normalization (for length, etc.). A more natural prompting approach is to present the question and answer options to the LLM jointly and have it output the symbol (e.g., “A”) associated with its chosen answer option. This approach allows the model to explicitly compare answer options, reduces computational costs, and mitigates the effects of tokenization scheme and answer option representations on answer selection. For the natural approach to be effective, the LLM it is used with must be able to associate answer options with the symbols that represent them. The LLM needs what we term multiple choice symbol binding (MCSB) ability. This ability varies greatly by model. We show that a model with high MCSB ability performs much better with the natural approach than with the traditional approach across 20 diverse datasets and largely closes the gap with the SOTA, suggesting that the MCQA ability of LLMs has been previously underestimated.  more » « less
Award ID(s):
2141680
PAR ID:
10444319
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Learning Representations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large language models (LLMs), such as GPT-3 and GPT-4, have demonstrated exceptional performance in various natural language processing tasks and have shown the ability to solve certain reasoning problems. However, their reasoning capabilities are limited and relatively shallow, despite the application of various prompting techniques. In contrast, formal logic is adept at handling complex reasoning, but translating natural language descriptions into formal logic is a challenging task that non-experts struggle with. This paper proposes a neuro-symbolic method that combines the strengths of large language models and answer set programming. Specifically, we employ an LLM to transform natural language descriptions of logic puzzles into answer set programs. We carefully design prompts for an LLM to convert natural language descriptions into answer set programs in a step by step manner. Surprisingly, with just a few in-context learning examples, LLMs can generate reasonably complex answer set programs. The majority of errors made are relatively simple and can be easily corrected by humans, thus enabling LLMs to effectively assist in the creation of answer set programs. 
    more » « less
  2. Abstract Objectives

    To investigate approaches of reasoning with large language models (LLMs) and to propose a new prompting approach, ensemble reasoning, to improve medical question answering performance with refined reasoning and reduced inconsistency.

    Materials and Methods

    We used multiple choice questions from the USMLE Sample Exam question files on 2 closed-source commercial and 1 open-source clinical LLM to evaluate our proposed approach ensemble reasoning.

    Results

    On GPT-3.5 turbo and Med42-70B, our proposed ensemble reasoning approach outperformed zero-shot chain-of-thought with self-consistency on Steps 1, 2, and 3 questions (+3.44%, +4.00%, and +2.54%) and (2.3%, 5.00%, and 4.15%), respectively. With GPT-4 turbo, there were mixed results with ensemble reasoning again outperforming zero-shot chain-of-thought with self-consistency on Step 1 questions (+1.15%). In all cases, the results demonstrated improved consistency of responses with our approach. A qualitative analysis of the reasoning from the model demonstrated that the ensemble reasoning approach produces correct and helpful reasoning.

    Conclusion

    The proposed iterative ensemble reasoning has the potential to improve the performance of LLMs in medical question answering tasks, particularly with the less powerful LLMs like GPT-3.5 turbo and Med42-70B, which may suggest that this is a promising approach for LLMs with lower capabilities. Additionally, the findings show that our approach helps to refine the reasoning generated by the LLM and thereby improve consistency even with the more powerful GPT-4 turbo. We also identify the potential and need for human-artificial intelligence teaming to improve the reasoning beyond the limits of the model.

     
    more » « less
  3. Multiple choice questions are traditionally expensive to produce. Recent advances in large language models (LLMs) have led to fine-tuned LLMs that generate questions competitive with human-authored questions. However, the relative capabilities of ChatGPT-family models have not yet been established for this task. We present a carefully-controlled human evaluation of three conditions: a fine-tuned, augmented version of Macaw, instruction-tuned Bing Chat with zero-shot prompting, and humanauthored questions from a college science textbook. Our results indicate that on six of seven measures tested, both LLM’s performance was not significantly different from human performance. Analysis of LLM errors further suggests that Macaw and Bing Chat have different failure modes for this task: Macaw tends to repeat answer options whereas Bing Chat tends to not include the specified answer in the answer options. For Macaw, removing error items from analysis results in performance on par with humans for all metrics; for Bing Chat, removing error items improves performance but does not reach human-level performance. 
    more » « less
  4. Moore, S ; Stamper, J ; Cao, T ; Liu, Z ; Hu, X ; Lu, Y ; Liang, J ; Khosravi, H ; Denny, P ; Singh, A (Ed.)
    Multiple choice questions are traditionally expensive to produce. Recent advances in large language models (LLMs) have led to fine-tuned LLMs that generate questions competitive with human-authored questions. However, the relative capabilities of ChatGPT-family models have not yet been established for this task. We present a carefully-controlled human evaluation of three conditions: a fine-tuned, augmented version of Macaw, instruction-tuned Bing Chat with zero-shot prompting, and humanauthored questions from a college science textbook. Our results indicate that on six of seven measures tested, both LLM’s performance was not significantly different from human performance. Analysis of LLM errors further suggests that Macaw and Bing Chat have different failure modes for this task: Macaw tends to repeat answer options whereas Bing Chat tends to not include the specified answer in the answer options. For Macaw, removing error items from analysis results in performance on par with humans for all metrics; for Bing Chat, removing error items improves performance but does not reach human-level performance. 
    more » « less
  5. Fancsali, Stephen E. ; Rus, Vasile (Ed.)

    Multi-angle question answering models have recently been proposed that promise to perform related tasks like question generation. However, performance on related tasks has not been thoroughly studied. We investigate a leading model called Macaw on the task of multiple choice question generation and evaluate its performance on three angles that systematically reduce the complexity of the task. Our results indicate that despite the promise of generalization, Macaw performs poorly on untrained angles. Even on a trained angle, Macaw fails to generate four distinct multiple-choice options on 17% of inputs. We propose augmenting multiple- choice options by paraphrasing angle input and show this increases overall success to 97.5%. A human evaluation comparing the augmented multiple-choice questions with textbook questions on the same topic reveals that Macaw questions broadly score highly but below human questions.

     
    more » « less