skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Boosted Molecular Dynamics: Accelerating Molecular Simulations with Gaussian Boost Potentials Generated Using Probabilistic Bayesian Deep Neural Network
Award ID(s):
2117449 2438595
PAR ID:
10444333
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Journal of Physical Chemistry Letters
Volume:
14
Issue:
21
ISSN:
1948-7185
Page Range / eLocation ID:
4970 to 4982
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The dominant form of oxygen in cold molecular clouds is gas-phase carbon monoxide (CO) and ice-phase water (H2O). Yet, in planet-forming disks around young stars, gas-phase CO and H2O are less abundant relative to their interstellar medium values, and no other major oxygen-carrying molecules have been detected. Some astrochemical models predict that gas-phase molecular oxygen (O2) should be a major carrier of volatile oxygen in disks. We report a deep search for emission from the isotopologue16O18O (NJ= 21− 01line at 233.946 GHz) in the nearby protoplanetary disk around TW Hya. We used imaging techniques and matched filtering to search for weak emission but do not detect16O18O. Based on our results, we calculate upper limits on the gas-phase O2abundance in TW Hya of (6.4–70) × 10−7relative to H, which is 2–3 orders of magnitude below solar oxygen abundance. We conclude that gas-phase O2is not a major oxygen carrier in TW Hya. Two other potential oxygen-carrying molecules, SO and SO2, were covered in our observations, which we also do not detect. Additionally, we report a serendipitous detection of the C15NNJ= 25/2− 13/2hyperfine transitions,F= 3 − 2 andF= 2 − 1, at 219.9 GHz, which we found via matched filtering and confirm through imaging. 
    more » « less