skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Learning Rational Subgoals from Demonstrations and Instructions
We present a framework for learning useful subgoals that support efficient long-term planning to achieve novel goals. At the core of our framework is a collection of rational subgoals (RSGs), which are essentially binary classifiers over the environmental states. RSGs can be learned from weakly-annotated data, in the form of unsegmented demonstration trajectories, paired with abstract task descriptions, which are composed of terms initially unknown to the agent (e.g., collect-wood then craft-boat then go-across-river). Our framework also discovers dependencies between RSGs, e.g., the task collect-wood is a helpful subgoal for the task craft-boat. Given a goal description, the learned subgoals and the derived dependencies facilitate off-the-shelf planning algorithms, such as A* and RRT, by setting helpful subgoals as waypoints to the planner, which significantly improves performance-time efficiency.  more » « less
Award ID(s):
2214177
PAR ID:
10444337
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
ISSN:
2159-5399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Teaching a deep reinforcement learning (RL) agent to follow instructions in multi-task environments is a challenging problem. We consider that user defines every task by a linear temporal logic (LTL) formula. However, some causal dependencies in complex environments may be unknown to the user in advance. Hence, when human user is specifying instructions, the robot cannot solve the tasks by simply following the given instructions. In this work, we propose a hierarchical reinforcement learning (HRL) framework in which a symbolic transition model is learned to efficiently produce high-level plans that can guide the agent efficiently solve different tasks. Specifically, the symbolic transition model is learned by inductive logic programming (ILP) to capture logic rules of state transitions. By planning over the product of the symbolic transition model and the automaton derived from the LTL formula, the agent can resolve causal dependencies and break a causally complex problem down into a sequence of simpler low-level sub-tasks. We evaluate the proposed framework on three environments in both discrete and continuous domains, showing advantages over previous representative methods. 
    more » « less
  2. Great storytellers know how to take us on a journey. They direct characters to act—not necessarily in the most rational way—but rather in a way that leads to interesting situations, and ultimately creates an impactful experience for audience members looking on. If audience experience is what matters most, then can we help artists and animators directly craft such experiences, independent of the concrete character actions needed to evoke those experiences? In this paper, we offer a novel computational framework for such tools. Our key idea is to optimize animations with respect to simulated audience members’ experiences. To simulate the audience, we borrow an established principle from cognitive science: that human social intuition can be modeled as “inverse planning,” the task of inferring an agent’s (hidden) goals from its (observed) actions. Building on this model, we treat storytelling as “inverse inverse planning,” the task of choosing actions to manipulate an inverse planner’s inferences. Our framework is grounded in literary theory, naturally capturing many storytelling elements from first principles. We give a series of examples to demonstrate this, with supporting evidence from human subject studies. 
    more » « less
  3. null (Ed.)
    We present a framework for autonomously learning a portable representation that describes a collection of low-level continuous environments. We show that these abstract representations can be learned in a task-independent egocentric space specific to the agent that, when grounded with problem-specific information, are provably sufficient for planning. We demonstrate transfer in two different domains, where an agent learns a portable, task-independent symbolic vocabulary, as well as operators expressed in that vocabulary, and then learns to instantiate those operators on a per-task basis. This reduces the number of samples required to learn a representation of a new task. 
    more » « less
  4. Search-as-learning research has emphasized the need to better support searchers when learning about complex topics online. Prior work in the learning sciences has shown that effective self-regulated learning (SRL), in which goals are a central function, is critical to improving learning outcomes. This dissertation investigates the influence of subgoals on learning during search. Two conditions were investigated: \textsc{Subgoals} and \textsc{NoSubgoals}. In the \textsc{Subgoals} condition, a tool called the Subgoal Manager was used to help searchers to develop specific subgoals associated with an overall learning-oriented search task. The influence of subgoals is explored along four dimensions: (1) learning outcomes; (2) searcher perceptions; (3) search behaviors; and (4) SRL processes. Learning outcomes were measured with two assessments, an established multiple-choice conceptual knowledge test and an open-ended summary of learning. Learning assessments were administered immediately after search and one week after search to capture learning retention. A qualitative analysis was conducted to identify the percentage of true statements on open-ended learning assessments. A think-aloud protocol was used to capture SRL processes. A second qualitative analysis was conducted to categorize SRL processes from think-aloud comments and behaviors during the search session. Findings from the dissertation suggest that subgoals improved learning during search. Additionally, it seems that subgoals helped participants to better retain what was learned one week later. Findings also suggest that SRL processes of participants in the \textsc{Subgoals} condition were more frequent and more diverse. SRL processes that were explicitly supported by the Subgoal Manager seemed to be more frequent in the \textsc{Subgoals} condition as well as SRL processes that were not explicitly supported. 
    more » « less
  5. null (Ed.)
    We present a framework for planning complex motor actions such as pouring or scooping from arbitrary start states in cluttered real-world scenes. Traditional approaches to such tasks use dynamic motion primitives (DMPs) learned from human demonstrations. We enhance a recently proposed state of- the-art DMP technique capable of obstacle avoidance by including them within a novel hybrid framework. This complements DMPs with sampling-based motion planning algorithms, using the latter to explore the scene and reach promising regions from which a DMP can successfully complete the task. Experiments indicate that even obstacle-aware DMPs suffer in task success when used in scenarios which largely differ from the trained demonstration in terms of the start, goal, and obstacles. Our hybrid approach significantly outperforms obstacle-aware DMPs by successfully completing tasks in cluttered scenes for a pouring task in simulation. We further demonstrate our method on a real robot for pouring and scooping tasks. 
    more » « less