Robotic manipulation problems are inherently continuous, but typically have underlying discrete structure, e.g., whether or not an object is grasped. This means many problems are multi-modal and in particular have a continuous infinity of modes. For example, in a pick-and-place manipulation domain, every grasp and placement of an object is a mode. Usually manipulation problems require the robot to transition into different modes, e.g., going from a mode with an object placed to another mode with the object grasped. To successfully find a manipulation plan, a planner must find a sequence of valid single-mode motions as well as valid transitions between these modes. Many manipulation planners have been proposed to solve tasks with multi-modal structure. However, these methods require mode-specific planners and fail to scale to very cluttered environments or to tasks that require long sequences of transitions. This paper presents a general layered planning approach to multi-modal planning that uses a discrete “lead” to bias search towards useful mode transitions. The difficulty of achieving specific mode transitions is captured online and used to bias search towards more promising sequences of modes. We demonstrate our planner on complex scenes and show that significant performance improvements are tied to both our discrete “lead” and our continuous representation.
more »
« less
Visibility-Aware Navigation Among Movable Obstacles
In this paper, we examine the problem of visibility-aware robot navigation among movable obstacles (VANAMO). A variant of the well-known NAMO robotic planning problem, VANAMO puts additional visibility constraints on robot motion and object movability. This new problem formulation lifts the restrictive assumption that the map is fully visible and the object positions are fully known. We provide a formal definition of the VANAMO problem and propose the Look and Manipulate Backchaining (LAMB) algorithm for solving such problems. LAMB has a simple vision-based API that makes it more easily transferable to real-world robot applications and scales to the large 3D environments. To evaluate LAMB, we construct a set of tasks that illustrate the complex interplay between visibility and object movability that can arise in mobile base manipulation problems in unknown environments. We show that LAMB outperforms NAMO and visibility-aware motion planning approaches as well as simple combinations of them on complex manipulation problems with partial observability
more »
« less
- Award ID(s):
- 2214177
- PAR ID:
- 10444340
- Date Published:
- Journal Name:
- IEEE International Conference on Robotics and Automation
- ISSN:
- 1049-3492
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The problem of planning for a robot that operates in environments containing a large number of objects, taking actions to move itself through the world as well as to change the state of the objects, is known as task and motion planning (TAMP). TAMP problems contain elements of discrete task planning, discrete–continuous mathematical programming, and continuous motion planning and thus cannot be effectively addressed by any of these fields directly. In this article, we define a class of TAMP problems and survey algorithms for solving them, characterizing the solution methods in terms of their strategies for solving the continuous-space subproblems and their techniques for integrating the discrete and continuous components of the search.more » « less
-
Generative models such as diffusion models, excel at capturing high-dimensional distributions with diverse input modalities, e.g. robot trajectories, but are less effective at multistep constraint reasoning. Task and Motion Planning (TAMP) approaches are suited for planning multi-step autonomous robot manipulation. However, it can be difficult to apply them to domains where the environment and its dynamics are not fully known. We propose to overcome these limitations by composing diffusion models using a TAMP system. We use the learned components for constraints and samplers that are difficult to engineer in the planning model, and use a TAMP solver to search for the task plan with constraint-satisfying action parameter values. To tractably make predictions for unseen objects in the environment, we define the learned samplers and TAMP operators on learned latent embedding of changing object states. We evaluate our approach in a simulated articulated object manipulation domain and show how the combination of classical TAMP, generative modeling, and latent embedding enables multi-step constraint-based reasoning. We also apply the learned sampler in the real world.more » « less
-
null (Ed.)Earlier work has shown that reusing experience from prior motion planning problems can improve the efficiency of similar, future motion planning queries. However, for robots with many degrees-of-freedom, these methods exhibit poor generalization across different environments and often require large datasets that are impractical to gather. We present SPARK and FLAME, two experience-based frameworks for sampling-based planning applicable to complex manipulators in 3D environments. Both combine samplers associated with features from a workspace decomposition into a global biased sampling distribution. SPARK decomposes the environment based on exact geometry while FLAME is more general, and uses an octree-based decomposition obtained from sensor data. We demonstrate the effectiveness of SPARK and FLAME on a real and simulated Fetch robot tasked with challenging pick-and-place manipulation problems. Our approaches can be trained incrementally and significantly improve performance with only a handful of examples, generalizing better over diverse tasks and environments as compared to prior approaches.more » « less
-
Performing robust goal-directed manipulation tasks remains a crucial challenge for autonomous robots. In an ideal case, shared autonomous control of manipulators would allow human users to specify their intent as a goal state and have the robot reason over the actions and motions to achieve this goal. However, realizing this goal remains elusive due to the problem of perceiving the robot’s environment. We address and describe the problem of axiomatic scene estimation for robot manipulation in cluttered scenes which is the estimation of a tree-structured scene graph describing the configuration of objects observed from robot sensing. We propose generative approaches to scene inference (as the axiomatic particle filter, and the axiomatic scene estimation by Markov chain Monte Carlo based sampler) of the robot’s environment as a scene graph. The result from AxScEs estimation are axioms amenable to goal-directed manipulation through symbolic inference for task planning and collision-free motion planning and execution. We demonstrate the results for goal-directed manipulation of multi-object scenes by a PR2 robot.more » « less
An official website of the United States government

