skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decomposition, Condensation Defects, and Fusion
Abstract In this paper we outline the application of decomposition to condensation defects and their fusion rules. Briefly, a condensation defect is obtained by gauging a higher‐form symmetry along a submanifold, and so there is a natural interplay with notions of decomposition, the statement thatd‐dimensional quantum field theories with global ‐form symmetries are equivalent to disjoint unions of other quantum field theories. We will also construct new (sometimes non‐invertible) defects, and compute their fusion products, again utilizing decomposition. An important role will be played in all these analyses by theta angles for gauged higher‐form symmetries, which can be used to select individual universes in a decomposition.  more » « less
Award ID(s):
2014086 1820867
PAR ID:
10444382
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Fortschritte der Physik
Volume:
70
Issue:
11
ISSN:
0015-8208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper we discuss dilaton shifts (Euler counterterms) arising in decomposition of two-dimensional quantum field theories with higher-form symmetries. Relative shifts between universes are fixed by locality and take a universal form, reflecting underlying (noninvertible, quantum) symmetries. The first part of this paper constructs a general formula for such dilaton shifts, and discusses related computations. In the second part of this paper, we comment on the relation between decomposition and ensembles. 
    more » « less
  2. Abstract A recent development in our understanding of the theory of quantum fields is the fact that familiar gauge theories in spacetime dimensions greater than two can have non-invertible symmetries generated by topological defects. The hallmark of these non-invertible symmetries is that the fusion rule deviates from the usual group-like structure, and in particular the fusion coefficients take values in topological field theories (TFTs) rather than in mere numbers. In this paper we begin an exploration of the associativity structure of non-invertible symmetries in higher dimensions. The first layer of associativity is captured by F-symbols, which we find to assume values in TFTs that have one dimension lower than that of the defect. We undertake an explicit analysis of the F-symbols for the non-invertible chiral symmetry that is preserved by the massless QED and explore their physical implications. In particular, we show the F-symbol TFTs can be detected by probing the correlators of topological defects with ’t Hooft lines. Furthermore, we derive the Ward–Takahashi identity that arises from the chiral symmetry on a large class of four-dimensional manifolds with non-trivial topologies directly from the topological data of the symmetry defects, without referring to a Lagrangian formulation of the theory. 
    more » « less
  3. We introduce a definition and framework for internal topological symmetries in quantum field theory, including “noninvertible symmetries” and “categorical symmetries”. We outline a calculus of topological defects which takes advantage of well-developed theorems and techniques in topological field theory. Our discussion focuses on finite symmetries, and we give indications for a generalization to other symmetries. We treat quotients and quotient defects (often called “gauging” and “condensation defects”), finite electromagnetic duality, and duality defects, among other topics. We include an appendix on finite homotopy theories, which are often used to encode finite symmetries and for which computations can be carried out using methods of algebraic topology. Throughout we emphasize exposition and examples over a detailed technical treatment. 
    more » « less
  4. We investigate fractionalization of non-invertible symmetry in (2+1)D topological orders. We focus on coset non-invertible symmetries obtained by gauging non-normal subgroups of invertible0 0 -form symmetries. These symmetries can arise as global symmetries in quantum spin liquids, given by the quotient of the projective symmetry group by a non-normal subgroup as invariant gauge group. We point out that such coset non-invertible symmetries in topological orders can exhibit symmetry fractionalization: each anyon can carry a “fractional charge” under the coset non-invertible symmetry given by a gauge invariant superposition of fractional quantum numbers. We present various examples using field theories and quantum double lattice models, such as fractional quantum Hall systems with charge conjugation symmetry gauged and finite group gauge theory from gauging a non-normal subgroup. They include symmetry enrichedS_3 S 3 andO(2) O ( 2 ) gauge theories. We show that such systems have a fractionalized continuous non-invertible coset symmetry and a well-defined electric Hall conductance. The coset symmetry enforces a gapless edge state if the boundary preserves the continuous non-invertible symmetry. We propose a general approach for constructing coset symmetry defects using a “sandwich” construction: non-invertible symmetry defects can generally be constructed from an invertible defect sandwiched by condensation defects. The anomaly free condition for finite coset symmetry is also identified. 
    more » « less
  5. A<sc>bstract</sc> In this paper, we test and extend a proposal of Gu, Pei, and Zhang for an application of decomposition to three-dimensional theories with one-form symmetries and to quantum K theory. The theories themselves do not decompose, but, OPEs of parallel one-dimensional objects (such as Wilson lines) and dimensional reductions to two dimensions do decompose, sometimes in two independent ways. We apply this to extend conjectures for quantum K theory rings of gerbes (realized by three-dimensional gauge theories with one-form symmetries) via both orbifold partition functions and gauged linear sigma models. 
    more » « less