We explore exact generalized symmetries in the standard 2+1d lattice\mathbb{Z}_2 gauge theory coupled to the Ising model, and compare them with their continuum field theory counterparts. One model has a (non-anomalous) non-invertible symmetry, and we identify two distinct non-invertible symmetry protected topological phases. The non-invertible algebra involves a lattice condensation operator, which creates a toric code ground state from a product state. Another model has a mixed anomaly between a 1-form symmetry and an ordinary symmetry. This anomaly enforces a nontrivial transition in the phase diagram, consistent with the “Higgs=SPT” proposal. Finally, we discuss how the symmetries and anomalies in these two models are related by gauging, which is a 2+1d version of the Kennedy-Tasaki transformation.
more »
« less
Fractionalization of coset non-invertible symmetry and exotic Hall conductance
We investigate fractionalization of non-invertible symmetry in (2+1)D topological orders. We focus on coset non-invertible symmetries obtained by gauging non-normal subgroups of invertible0 -form symmetries. These symmetries can arise as global symmetries in quantum spin liquids, given by the quotient of the projective symmetry group by a non-normal subgroup as invariant gauge group. We point out that such coset non-invertible symmetries in topological orders can exhibit symmetry fractionalization: each anyon can carry a “fractional charge” under the coset non-invertible symmetry given by a gauge invariant superposition of fractional quantum numbers. We present various examples using field theories and quantum double lattice models, such as fractional quantum Hall systems with charge conjugation symmetry gauged and finite group gauge theory from gauging a non-normal subgroup. They include symmetry enrichedS_3 andO(2) gauge theories. We show that such systems have a fractionalized continuous non-invertible coset symmetry and a well-defined electric Hall conductance. The coset symmetry enforces a gapless edge state if the boundary preserves the continuous non-invertible symmetry. We propose a general approach for constructing coset symmetry defects using a “sandwich” construction: non-invertible symmetry defects can generally be constructed from an invertible defect sandwiched by condensation defects. The anomaly free condition for finite coset symmetry is also identified.
more »
« less
- Award ID(s):
- 2120757
- PAR ID:
- 10592830
- Publisher / Repository:
- Sci Post
- Date Published:
- Journal Name:
- SciPost Physics
- Volume:
- 17
- Issue:
- 3
- ISSN:
- 2542-4653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It has recently been understood that the complete global symmetry of finite group topological gauge theories contains the structure of a higher-group. Here we study the higher-group structure in (3+1)D\mathbb{Z}_2 gauge theory with an emergent fermion, and point out that pumping chiralp+ip topological states gives rise to a\mathbb{Z}_{8} 0-form symmetry with mixed gravitational anomaly. This ordinary symmetry mixes with the other higher symmetries to form a 3-group structure, which we examine in detail. We then show that in the context of stabilizer quantum codes, one can obtain logical CCZ and CS gates by placing the code on a discretization ofT^3 (3-torus) andT^2 \rtimes_{C_2} S^1 (2-torus bundle over the circle) respectively, and pumpingp+ip states. Our considerations also imply the possibility of a logicalT gate by placing the code on\mathbb{RP}^3 and pumping ap+ip topological state.more » « less
-
Measurements are presented of the cross-section for the central exclusive production ofJ/\psi\to\mu^+\mu^- and\psi(2S)\to\mu^+\mu^- processes in proton-proton collisions at\sqrt{s} = 13 \ \mathrm{TeV} with 2016–2018 data. They are performed by requiring both muons to be in the LHCb acceptance (with pseudorapidity2<\eta_{\mu^±} < 4.5 ) and mesons in the rapidity range2.0 < y < 4.5 . The integrated cross-section results are\sigma_{J/\psi\to\mu^+\mu^-}(2.0 where the uncertainties are statistical, systematic and due to the luminosity determination. In addition, a measurement of the ratio of\psi(2S) andJ/\psi cross-sections, at an average photon-proton centre-of-mass energy of1\ \mathrm{TeV} , is performed, giving$ = 0.1763 ± 0.0029 ± 0.0008 ± 0.0039,$$ where the first uncertainty is statistical, the second systematic and the third due to the knowledge of the involved branching fractions. For the first time, the dependence of theJ/\psi$ and\psi(2S) cross-sections on the total transverse momentum transfer is determined inpp collisions and is found consistent with the behaviour observed in electron-proton collisions.more » « less
-
In a physical system with conformal symmetry, observables depend on cross-ratios, measures of distance invariant under global conformal transformations (conformal geometry for short). We identify a quantum information-theoretic mechanism by which the conformal geometry emerges at the gapless edge of a 2+1D quantum many-body system with a bulk energy gap. We introduce a novel pair of information-theoretic quantities(\mathfrak{c}_{\textrm{tot}}, \eta) that can be defined locally on the edge from the wavefunction of the many-body system, without prior knowledge of any distance measure. We posit that, for a topological groundstate, the quantity\mathfrak{c}_{\textrm{tot}} is stationary under arbitrary variations of the quantum state, and study the logical consequences. We show that stationarity, modulo an entanglement-based assumption about the bulk, implies (i)\mathfrak{c}_{\textrm{tot}} is a non-negative constant that can be interpreted as the total central charge of the edge theory. (ii)\eta is a cross-ratio, obeying the full set of mathematical consistency rules, which further indicates the existence of a distance measure of the edge with global conformal invariance. Thus, the conformal geometry emerges from a simple assumption on groundstate entanglement. We show that stationarity of\mathfrak{c}_{\textrm{tot}} is equivalent to a vector fixed-point equation involving\eta , making our assumption locally checkable. We also derive similar results for 1+1D systems under a suitable set of assumptions.more » « less
-
Abstract We show that the Levin-Wen model of a unitary fusion category$${\mathcal {C}}$$ is a gauge theory with gauge symmetry given by the tube algebra$${\text {Tube}}({\mathcal {C}})$$ . In particular, we define a model corresponding to a$${\text {Tube}}({\mathcal {C}})$$ symmetry protected topological phase, and we provide a gauging procedure which results in the corresponding Levin-Wen model. In the case$${\mathcal {C}}=\textsf{Hilb}(G,\omega )$$ , we show how our procedure reduces to the twisted gauging of a trivalG-SPT to produce the Twisted Quantum Double. We further provide an example which is outside the bounds of the current literature, the trivial Fibbonacci SPT, whose gauge theory results in the doubled Fibonacci string-net. Our formalism has a natural topological interpretation with string diagrams living on a punctured sphere. We provide diagrams to supplement our mathematical proofs and to give the reader an intuitive understanding of the subject matter.more » « less
An official website of the United States government

