We give polynomial time algorithms for the seminal results of Kahn, who showed that the Goldberg–Seymour and list‐coloring conjectures for (list‐)edge coloring multigraphs hold asymptotically. Kahn's arguments are based on the probabilistic method and are non‐constructive. Our key insight is that we can combine sophisticated techniques due to Achlioptas, Iliopoulos, and Kolmogorov for the analysis of local search algorithms with correlation decay properties of the probability spaces on matchings used by Kahn in order to construct efficient edge‐coloring algorithms.
more » « less- Award ID(s):
- 1815328
- PAR ID:
- 10444388
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Random Structures & Algorithms
- Volume:
- 61
- Issue:
- 4
- ISSN:
- 1042-9832
- Page Range / eLocation ID:
- p. 724-753
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Vizing’s celebrated theorem asserts that any graph of maximum degree ∆ admits an edge coloring using at most ∆ + 1 colors. In contrast, Bar-Noy, Motwani and Naor showed over a quarter century ago that the trivial greedy algorithm, which uses 2∆−1 colors, is optimal among online algorithms. Their lower bound has a caveat, however: it only applies to lowdegree graphs, with ∆ = O(log n), and they conjectured the existence of online algorithms using ∆(1 + o(1)) colors for ∆ = ω(log n). Progress towards resolving this conjecture was only made under stochastic arrivals (Aggarwal et al., FOCS’03 and Bahmani et al., SODA’10). We resolve the above conjecture for adversarial vertex arrivals in bipartite graphs, for which we present a (1+o(1))∆-edge-coloring algorithm for ∆ = ω(log n) known a priori. Surprisingly, if ∆ is not known ahead of time, we show that no (e/(e−1)−Ω(1))∆-edge-coloring algorithm exists.We then provide an optimal, (e/(e−1) +o(1))∆-edge-coloring algorithm for unknown ∆ = ω(log n). Key to our results, and of possible independent interest, is a novel fractional relaxation for edge coloring, for which we present optimal fractional online algorithms and a near-lossless online rounding scheme, yielding our optimal randomized algorithms.more » « less
-
Bringmann, Karl ; Grohe, Martin ; Puppis, Gabriele ; Svensson, Ola (Ed.)For edge coloring, the online and the W-streaming models seem somewhat orthogonal: the former needs edges to be assigned colors immediately after insertion, typically without any space restrictions, while the latter limits memory to be sublinear in the input size but allows an edge’s color to be announced any time after its insertion. We aim for the best of both worlds by designing small-space online algorithms for edge coloring. Our online algorithms significantly improve upon the memory used by prior ones while achieving an O(1)-competitive ratio. We study the problem under both (adversarial) edge arrivals and vertex arrivals. Under vertex arrivals of any n-node graph with maximum vertex-degree Δ, our online O(Δ)-coloring algorithm uses only semi-streaming space (i.e., Õ(n) space, where the Õ(.) notation hides polylog(n) factors). Under edge arrivals, we obtain an online O(Δ)-coloring in Õ(n√Δ) space. We also achieve a smooth color-space tradeoff: for any t = O(Δ), we get an O(Δt(log²Δ))-coloring in Õ(n√{Δ/t}) space, improving upon the state of the art that used Õ(nΔ/t) space for the same number of colors. The improvements stem from extensive use of random permutations that enable us to avoid previously used colors. Most of our algorithms can be derandomized and extended to multigraphs, where edge coloring is known to be considerably harder than for simple graphs.more » « less
-
Summary Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long‐term warming.
Here, we conducted a meta‐analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases – leaf‐out, first flowering, last flowering, and leaf coloring.
We showed that warming advanced leaf‐out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf‐out and leaf coloring for woody species, decreased as the experimental duration extended.
Together, these results suggest that the real‐world impact of global warming on plant phenology will diminish over time as temperatures continue to increase.
-
Abstract DP‐coloring (also known as correspondence coloring) is a generalization of list coloring developed recently by Dvořák and Postle [J. Combin. Theory Ser. B 129 (2018), pp. 38–54]. In this paper we introduce and study the fractional DP‐chromatic number . We characterize all connected graphs such that : they are precisely the graphs with no odd cycles and at most one even cycle. By a theorem of Alon, Tuza, and Voigt [Discrete Math. 165–166 (1997), pp. 31–38], the fractional list‐chromatic number of any graph equals its fractional chromatic number . This equality does not extend to fractional DP‐colorings. Moreover, we show that the difference can be arbitrarily large, and, furthermore, for every graph of maximum average degree . On the other hand, we show that this asymptotic lower bound is tight for a large class of graphs that includes all bipartite graphs as well as many graphs of high girth and high chromatic number.
-
Abstract The list Ramsey number , recently introduced by Alon, Bucić, Kalvari, Kuperwasser, and Szabó, is a list‐coloring variant of the classical Ramsey number. They showed that if is a fixed ‐uniform hypergraph that is not ‐partite and the number of colors goes to infinity, . We prove that if and only if is not ‐partite.