skip to main content


Title: Tight Bounds for Online Edge Coloring
Vizing’s celebrated theorem asserts that any graph of maximum degree ∆ admits an edge coloring using at most ∆ + 1 colors. In contrast, Bar-Noy, Motwani and Naor showed over a quarter century ago that the trivial greedy algorithm, which uses 2∆−1 colors, is optimal among online algorithms. Their lower bound has a caveat, however: it only applies to lowdegree graphs, with ∆ = O(log n), and they conjectured the existence of online algorithms using ∆(1 + o(1)) colors for ∆ = ω(log n). Progress towards resolving this conjecture was only made under stochastic arrivals (Aggarwal et al., FOCS’03 and Bahmani et al., SODA’10). We resolve the above conjecture for adversarial vertex arrivals in bipartite graphs, for which we present a (1+o(1))∆-edge-coloring algorithm for ∆ = ω(log n) known a priori. Surprisingly, if ∆ is not known ahead of time, we show that no (e/(e−1)−Ω(1))∆-edge-coloring algorithm exists.We then provide an optimal, (e/(e−1) +o(1))∆-edge-coloring algorithm for unknown ∆ = ω(log n). Key to our results, and of possible independent interest, is a novel fractional relaxation for edge coloring, for which we present optimal fractional online algorithms and a near-lossless online rounding scheme, yielding our optimal randomized algorithms.  more » « less
Award ID(s):
1814603 1750808 1618280 1527110
PAR ID:
10121531
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Symposium on Foundations of Computer Science
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bringmann, Karl ; Grohe, Martin ; Puppis, Gabriele ; Svensson, Ola (Ed.)
    For edge coloring, the online and the W-streaming models seem somewhat orthogonal: the former needs edges to be assigned colors immediately after insertion, typically without any space restrictions, while the latter limits memory to be sublinear in the input size but allows an edge’s color to be announced any time after its insertion. We aim for the best of both worlds by designing small-space online algorithms for edge coloring. Our online algorithms significantly improve upon the memory used by prior ones while achieving an O(1)-competitive ratio. We study the problem under both (adversarial) edge arrivals and vertex arrivals. Under vertex arrivals of any n-node graph with maximum vertex-degree Δ, our online O(Δ)-coloring algorithm uses only semi-streaming space (i.e., Õ(n) space, where the Õ(.) notation hides polylog(n) factors). Under edge arrivals, we obtain an online O(Δ)-coloring in Õ(n√Δ) space. We also achieve a smooth color-space tradeoff: for any t = O(Δ), we get an O(Δt(log²Δ))-coloring in Õ(n√{Δ/t}) space, improving upon the state of the art that used Õ(nΔ/t) space for the same number of colors. The improvements stem from extensive use of random permutations that enable us to avoid previously used colors. Most of our algorithms can be derandomized and extended to multigraphs, where edge coloring is known to be considerably harder than for simple graphs. 
    more » « less
  2. Gørtz, Inge Li ; Farach-Colton, Martin ; Puglisi, Simon J ; Herman, Grzegorz (Ed.)
    We give the first almost-linear time algorithm for computing the maximal k-edge-connected subgraphs of an undirected unweighted graph for any constant k. More specifically, given an n-vertex m-edge graph G = (V,E) and a number k = log^o(1) n, we can deterministically compute in O(m+n^{1+o(1)}) time the unique vertex partition {V_1,… ,V_z} such that, for every i, V_i induces a k-edge-connected subgraph while every superset V'_i ⊃ V_{i} does not. Previous algorithms with linear time work only when k ≤ 2 [Tarjan SICOMP'72], otherwise they all require Ω(m+n√n) time even when k = 3 [Chechik et al. SODA'17; Forster et al. SODA'20]. Our algorithm also extends to the decremental graph setting; we can deterministically maintain the maximal k-edge-connected subgraphs of a graph undergoing edge deletions in m^{1+o(1)} total update time. Our key idea is a reduction to the dynamic algorithm supporting pairwise k-edge-connectivity queries [Jin and Sun FOCS'20]. 
    more » « less
  3. The online matching problem was introduced by Karp, Vazirani and Vazirani nearly three decades ago. In that seminal work, they studied this problem in bipartite graphs with vertices arriving only on one side, and presented optimal deterministic and randomized algorithms for this setting. In comparison, more general arrival models, such as edge arrivals and general vertex arrivals, have proven more challenging, and positive results are known only for various relaxations of the problem. In particular, even the basic question of whether randomization allows one to beat the trivially-optimal deterministic competitive ratio of 1/2 for either of these models was open. In this paper, we resolve this question for both these natural arrival models, and show the following. For edge arrivals, randomization does not help | no randomized algorithm is better than 1/2 competitive. For general vertex arrivals, randomization helps | there exists a randomized (1/2+ Ω(1))-competitive online matching algorithm. 
    more » « less
  4. Gilbert, Seth (Ed.)
    This paper concerns designing distributed algorithms that are singularly optimal, i.e., algorithms that are simultaneously time and message optimal, for the fundamental leader election problem in asynchronous networks. Kutten et al. (JACM 2015) presented a singularly near optimal randomized leader election algorithm for general synchronous networks that ran in O(D) time and used O(m log n) messages (where D, m, and n are the network’s diameter, number of edges and number of nodes, respectively) with high probability. Both bounds are near optimal (up to a logarithmic factor), since Ω(D) and Ω(m) are the respective lower bounds for time and messages for leader election even for synchronous networks and even for (Monte-Carlo) randomized algorithms. On the other hand, for general asynchronous networks, leader election algorithms are only known that are either time or message optimal, but not both. Kutten et al. (DISC 2020) presented a randomized asynchronous leader election algorithm that is singularly near optimal for complete networks, but left open the problem for general networks. This paper shows that singularly near optimal (up to polylogarithmic factors) bounds can be achieved for general asynchronous networks. We present a randomized singularly near optimal leader election algorithm that runs in O(D + log² n) time and O(m log² n) messages with high probability. Our result is the first known distributed leader election algorithm for asynchronous networks that is near optimal with respect to both time and message complexity and improves over a long line of results including the classical results of Gallager et al. (ACM TOPLAS, 1983), Peleg (JPDC, 1989), and Awerbuch (STOC, 89). 
    more » « less
  5. A streaming algorithm is considered to be adversarially robust if it provides correct outputs with high probability even when the stream updates are chosen by an adversary who may observe and react to the past outputs of the algorithm. We grow the burgeoning body of work on such algorithms in a new direction by studying robust algorithms for the problem of maintaining a valid vertex coloring of an n-vertex graph given as a stream of edges. Following standard practice, we focus on graphs with maximum degree at most Δ and aim for colorings using a small number f(Δ) of colors. A recent breakthrough (Assadi, Chen, and Khanna; SODA 2019) shows that in the standard, non-robust, streaming setting, (Δ+1)-colorings can be obtained while using only Õ(n) space. Here, we prove that an adversarially robust algorithm running under a similar space bound must spend almost Ω(Δ²) colors and that robust O(Δ)-coloring requires a linear amount of space, namely Ω(nΔ). We in fact obtain a more general lower bound, trading off the space usage against the number of colors used. From a complexity-theoretic standpoint, these lower bounds provide (i) the first significant separation between adversarially robust algorithms and ordinary randomized algorithms for a natural problem on insertion-only streams and (ii) the first significant separation between randomized and deterministic coloring algorithms for graph streams, since deterministic streaming algorithms are automatically robust. We complement our lower bounds with a suite of positive results, giving adversarially robust coloring algorithms using sublinear space. In particular, we can maintain an O(Δ²)-coloring using Õ(n √Δ) space and an O(Δ³)-coloring using Õ(n) space. 
    more » « less