skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Benthic B/Ca Record at Site 806: New Constraints on the Temperature of the West Pacific Warm Pool and the “El Padre” State in the Pliocene
Abstract The West Pacific Warm Pool (WPWP)'s response to increasedpCO2during the Pliocene is a key model validation target. Different temperature proxies show different trends: The foraminiferal Mg/Ca sea surface temperature (SST) record shows Pliocene WPWP temperatures ~1.2°C cooler than today (Wara et al., 2005,https://doi.org/10.1126/science.1112596), whereas a TEX86study finds a cooling trend and claims the Pliocene WPWP was warmer than today (Zhang et al., 2014,https://doi.org/10.1126/science.1246172). We focus on understanding biases in Mg/Ca data as the best way to constrain the temperature of the Pliocene WPWP. The strongest nonthermal controls on foraminiferal Mg/Ca are Mg/Ca of seawater and dissolution. Dissolution, which imparts a cool bias to Mg/Ca temperatures, depends on Δ[CO32−], the difference from the carbonate ion concentration needed for calcite saturation. Thus, Pliocene proxy discrepancies might stem from varying Δ[CO32−] over time. To constrain the effect of changing dissolution on the Mg/Ca data, we collected benthic foraminiferal B/Ca data (a proxy for Δ[CO32−]) from the WPWP spanning 0–5.5 Ma. We find no long‐term trend in Δ[CO32−], but variations above and below the threshold of foraminiferal dissolution yield an ~0.4°C cold bias when averaged over the middle to early Pliocene. Changes in seawater Mg/Ca create an ~0.6°C cold bias in the Pliocene Mg/Ca data. After accounting for these biases, we find that the Pliocene WPWP was ~0.1°C cooler than the late Holocene, ranging from −0.5°C to +0.5°C including all uncertainties. Our reconstruction shows a much lower east‐west temperature gradient in the Pliocene tropical Pacific than today, supporting a permanent El Niño‐like “El Padre” state.  more » « less
Award ID(s):
1658553
PAR ID:
10444404
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
35
Issue:
10
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A controversial aspect of Pliocene (5.3–2.6 Ma) climate is whether El Niño‐like (El Padre) conditions, characterized by a reduced trans‐equatorial sea‐surface temperature (SST) gradient, prevailed across the Pacific. Evidence for El Padre is chiefly based on reconstructions of sea‐surface conditions derived from the oxygen isotope (δ18O) and Mg/Ca compositions of shells belonging to the planktic foraminiferTrilobatus sacculifer. However, fossil shells of this species are a mixture of multiple carbonate phases—pre‐gametogenic, gametogenic (reproductive), and diagenetic calcites—that formed under different physiological and/or environmental conditions and are averaged in conventional whole‐shell analyses. Through in situ measurements of micrometer‐scale domains within Pliocene‐aged shells ofT. sacculiferfrom Ocean Drilling Program Site 806 in the western equatorial Pacific, we show that the δ18O of gametogenic calcite is 0.6–0.8‰ higher than pre‐gametogenic calcite, while the Mg/Ca ratios of these two phases are the same. Both the whole‐shell and pre‐gametogenic Mg/Ca records indicate that average early Pliocene SSTs were ~1°C warmer than modern, with present‐day SSTs being established during the latest Pliocene and early Pleistocene (~3.0–2.0 Ma). The measurement of multiple calcite phases by whole‐shell δ18O analyses masks a late Pliocene to earliest Pleistocene (3.6–2.2 Ma) decrease in seawater δ18O (δ18Osw) values reconstructed from in situ pre‐gametogenic δ18O and Mg/Ca measurements. Our novel δ18Oswrecord indicates that sea‐surface salinities in the west Pacific warm pool were higher than modern prior to ~3.5 Ma, which is consistent with more arid conditions under an El Padre state. 
    more » « less
  2. Abstract Faunal analog reconstructions suggest that Last Interglacial (MIS 5e) sea surface temperatures were cooler around Bermuda and in the Caribbean than modern climate. Here we describe new and revised clumped isotope measurements ofCittarium picafossil shells supporting previous findings of cooler than modern temperatures in Bermuda during the Last Interglacial. We resolve temperature and δ18Owdifferences between two closely located and apparently coeval sites described in Winkelstern et al. (2017),https://doi.org/10.1002/2016pa003014through reprocessing raw isotopic data with the updated Brand/IUPAC parameters. New subannual‐resolution clumped isotope data reveal large variations in δ18Owout of phase with seasonal temperature changes (i.e., lower δ18Owvalues in winter). Supported by modern δ18Owmeasurements identifying similar processes occurring today, we suggest past variations in coastal δ18Owwere driven by seasonally variable freshwater discharge from a subterranean aquifer beneath the island. Taken together, our results emphasize the importance of δ18Owin controlling carbonate δ18O, and suggest that typical assumptions of constant δ18Owshould be made cautiously in nearshore settings and can contribute to less accurate reconstructions of paleotemperature. 
    more » « less
  3. Abstract While high latitude amplification is seen in modern observations, paleoclimate records, and climate modeling, better constraints on the magnitude and pattern of amplification would provide insights into the mechanisms that drive it, which remain actively debated. Here we present multi-proxy multi-site paleotemperature records over the last 10 million years from the Western Pacific Warm Pool (WPWP) – the warmest endmember of the global ocean that is uniquely important in the global radiative feedback change. These sea surface temperature records, based on lipid biomarkers and seawater Mg/Ca-adjusted foraminiferal Mg/Ca, unequivocally show warmer WPWP in the past, and a secular cooling over the last 10 million years. Compiling these data with existing records reveals a persistent, nearly stationary, extratropical response pattern in the Pacific in which high latitude (~50°N) temperatures increase by ~2.4° for each degree of WPWP warming. This relative warming pattern is also evident in model outputs of millennium-long climate simulations with quadrupling atmospheric CO2, therefore providing a strong constraint on the future equilibrium response of the Earth System. 
    more » « less
  4. Abstract Axial Seamount is an active submarine volcano located at the intersection of the Cobb hot spot and the Juan de Fuca Ridge (45°57′N, 130°01′W). Bottom pressure recorders captured co‐eruption subsidence of 2.4–3.2 m in 1998, 2011, and 2015, and campaign‐style pressure surveys every 1–2 years have provided a long‐term time series of inter‐eruption re‐inflation. The 2015 eruption occurred shortly after the Ocean Observatories Initiative (OOI) Cabled Array came online providing real‐time seismic and deformation observations for the first time. Nooner and Chadwick (2016,https://doi.org/10.1126/science.aah4666) used the available vertical deformation data to model the 2015 eruption deformation source as a steeply dipping prolate‐spheroid, approximating a high‐melt zone or conduit beneath the eastern caldera wall. More recently, Levy et al. (2018,https://doi.org/10.1130/G39978.1) used OOI seismic data to estimate dip‐slip motion along a pair of outward‐dipping caldera ring faults. This fault motion complicates the deformation field by contributing up to several centimeters of vertical seafloor motion. In this study, fault‐induced surface deformation was calculated from the slip estimates of Levy et al. (2018,https://doi.org/10.1130/G39978.1) then removed from vertical deformation data prior to model inversions. Removing fault motion resulted in an improved model fit with a new best‐fitting deformation source located 2.11 km S64°W of the source of Nooner and Chadwick (2016,https://doi.org/10.1126/science.aah4666) with similar geometry. This result shows that ring fault motion can have a significant impact on surface deformation, and future modeling efforts need to consider the contribution of fault motion when estimating the location and geometry of subsurface magma movement at Axial Seamount. 
    more » « less
  5. Abstract Wave breaking induced bubbles contribute a significant part of air‐sea gas fluxes. Recent modeling of the sea state dependent CO2flux found that bubbles contribute up to ∼40% of the total CO2air‐sea fluxes (Reichl & Deike, 2020,https://doi.org/10.1029/2020gl087267). In this study, we implement the sea state dependent bubble gas transfer formulation of Deike and Melville (2018,https://doi.org/10.1029/2018gl078758) into a spectral wave model (WAVEWATCH III) incorporating the spectral modeling of the wave breaking distribution from Romero (2019,https://doi.org/10.1029/2019gl083408). We evaluate the accuracy of the sea state dependent gas transfer parameterization against available measurements of CO2gas transfer velocity from 9 data sets (11 research cruises, see Yang et al. (2022,https://doi.org/10.3389/fmars.2022.826421)). The sea state dependent parameterization for CO2gas transfer velocity is consistent with observations, while the traditional wind‐only parameterization used in most global models slightly underestimates the observations of gas transfer velocity. We produce a climatology of the sea state dependent gas transfer velocity using reanalysis wind and wave data spanning 1980–2017. The climatology shows that the enhanced gas transfer velocity occurs frequently in regions with developed sea states (with strong wave breaking and high significant wave height). The present study provides a general sea state dependent parameterization for gas transfer, which can be implemented in global coupled models. 
    more » « less