skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Paraphlomis jinggangshanensis (Lamiaceae), a new species from Jiangxi, China
Paraphlomis jinggangshanensis (Lamiaceae), a new species from Jiangxi Province, China, is described and illustrated. The new species is morphologically similar to P. intermedia , but can be easily distinguished from the latter by its cordate leaf base ( vs. cuneate, decurrent), stem and calyx tube with glandular hairs ( vs. short pubescent), and glabrous anthers ( vs. ciliate anthers). A phylogenetic analysis, based on ITS regions, suggests that P. jinggangshanensis represents a separate branch in Paraphlomis and is closely related to Clade II. It is currently known only from Jinggangshan National Natural Reserve. Because of its limited distribution and small population size, the species was assessed as Near Threatened (NT) according to the IUCN Red List Categories and Criteria.  more » « less
Award ID(s):
2101884
PAR ID:
10444710
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
PhytoKeys
Volume:
204
ISSN:
1314-2011
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Buzz pollination involves the release of pollen from, primarily, poricidal anthers through vibrations generated by certain bee species. Despite previous experimental and numerical studies, the intricacies of pollen dynamics within vibrating anthers remain elusive due to the challenges in observing these small-scale, opaque systems. This research employs the discrete element method to simulate the pollen expulsion process in vibrating anthers. By exploring various frequencies and displacement amplitudes, a correlation between how aggressively the anther shakes and the initial rate of pollen expulsion is observed under translating oscillations. This study highlights that while increasing both the frequency and displacement of vibration enhances pollen release, the rate of release does not grow linearly with their increase. Our findings also reveal the significant role of pollen–pollen interactions, which account for upwards of one-third of the total collisions. Comparisons between two types of anther exits suggest that pore size and shape also influence expulsion rates. This research provides a foundation for more comprehensive models that can incorporate additional factors such as cohesion, adhesion and Coulomb forces, paving the way for deeper insights into the mechanics of buzz pollination and its variability across different anther types and vibration parameters. 
    more » « less
  2. Two new Phenacogrammus are described from the Ndzaa River, a small left-bank tributary of the Mfimi-Lukenie River in the central Congo basin. They share with P. deheyni, a congener endemic to the Cuvette Centrale to the north, a prominent anterior expansion of the first pleural rib; a feature interpreted here as a synapomorphy diagnostic for this species assemblage. The two new species are readily differentiated from P. deheyni based on differences in pigmentation patterning, a lower number of scales in longitudinal series (26–28 vs. 29–33) and a longer head length (m. 24.9% SL vs. 21.7 and 23.2% SL). Phenacogrammus flexus, new species, is distinguished from all congeners in the possession of 6 (vs. 7) supraneural bones, and a characteristic zigzag pattern of black pigmentation along and below the midline extending from the posterior border of the opercle to the base of the caudal peduncle. While no unambiguous morphological autapomorphies have been located to diagnose P. concolor, new species, it is nonetheless readily distinguished from all congeners, except P. deheyni and P. flexus, in the possession of a prominent anterior expansion of the first pleural rib. It differs from both P. deheyni and P. flexus in the absence of a dominant pigmentation patterning over the flanks and caudal peduncle. Additionally, it differs from P. flexus in a shallower body depth (m. 24.9% vs. 27.0% SL) and in the possession of 7 (vs. 6) supraneurals. 
    more » « less
  3. Zamia orinoquiensis Calonje, Betancur & A.Lindstr., a new species from the western Orinoquía region of Colombia is described and illustrated. The species is segregated from and compared to Z. muricata Willd., the latter which is morphologically recharacterized, illustrated, and recircumscribed to include populations from tropical dry forest and tropical moist forests in the Lara-Falcón Formation and the Cordillera de la Costa natural regions of Venezuela, as well as the Serranía de Macuira in La Guajira, Colombia. Zamia orinoquiensis is morphologically distinguished from Z. muricata by its leaves bearing fewer, coriaceous (vs. papyraceous) leaflets, eophylls with 2 (vs. 4) leaflets, pollen strobili that are brown to reddish brown (vs. cream to tan) with larger microsporophylls bearing more numerous microsporangia, and ovulate strobili that are dark brown to black (vs. dark olive green to olive brown) at maturity. 
    more » « less
  4. Miconia tetrandra, a morphologically distinctive species restricted to the Caribbean region, is provided with an updated assessment of its phylogenetic position and taxonomy. A detailed description and nomenclatural treatment are provided, along with a consideration of phenology, distribution and habitat, and citation of specimens examined. The species is a member of the Caribbean clade, and it is unusual within Miconia in having flowers with only four stamens (alternating with the petals), with short, obovate, yellow anthers that each open by two large pores. Miconia tetrandra is morphologically quite divergent from, but is likely related to, a clade comprised by M. angustifolia, M. urbanii, and M. biflora, and these three species traditionally have been included within the genus Tetrazygia. In contrast, M. tetrandra usually has been placed within Miconia. 
    more » « less
  5. Abstract Floral microbes, including bacteria and fungi, alter nectar quality, thus changing pollinator visitation. Conversely, pollinator visitation can change the floral microbial community.Most studies on dispersal of floral microbes have focused on bees, ants or hummingbirds, yet Lepidoptera are important pollinators.We asked (a) where are microbes present on the butterfly body, (b) do butterflies transfer microbes while foraging, and (c) how does butterfly foraging affect microbial abundance on different floret structures.The tarsi and proboscis had significantly more microbes than the thorax in wild‐caughtGlaucopsyche lygdamus(Lepidoptera: Lycaenidae) andSpeyeria mormonia(Lepidoptera: Nymphalidae).Glaucopsyche lygdamus, a smaller‐bodied species, had fewer microbes thanS. mormonia.As a marker for microbes, we used a bacterium (Rhodococcus fascians,near NCBI Y11196) isolated from aS. mormoniathat was foraging for nectar, and examined its dispersal byG. lygdamusandS. mormoniavisiting florets ofPyrrocoma crocea(Asteraceae). Microbial dispersal among florets correlated positively with bacterial abundance in the donor floret. Dispersal also depended on butterfly species, age, and bacterial load carried by the butterfly.Recipient florets had less bacteria than donor florets. The nectaries had more bacteria than the anthers or the stigmas, while anthers and stigmas did not differ from each other. There was no differential transmission among floral organs.Lepidoptera thus act as vectors of floral microbes. Including Lepidoptera is thus crucial to an understanding of plant–pollinator–microbe interactions. Future studies should consider the role of vectored microbes in lepidopteran ecology and fitness. 
    more » « less