skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantification of discharge‐specific effects on dissolved organic matter export from major Arctic rivers from 1982 through 2019
Key Points Modeled dissolved organic carbon export was 18.4 Tg C yr ‐1 (median) from 1982‐2019 for the six largest Arctic Rivers Proportional contributions of chromophoric to total dissolved organic carbon (CDOC & DOC) are positively correlated with water discharge Increasing discharge and shifting seasonality, independent of other factors, would have increased CDOC and DOC export from 1982‐2019  more » « less
Award ID(s):
2230812 1914215 1913888 1914081
PAR ID:
10444811
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Global Biogeochemical Cycles
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coastal mountain rivers export disproportionately high quantities of terrestrial organic carbon (OC) directly to the ocean, feeding microbial communities and altering coastal ecology. To better predict and mitigate the effects of wildfires on aquatic ecosystems and resources, we must evaluate the relationships between fire, hydrology, and carbon export, particularly in the fire‐prone western United States. This study examined the spatiotemporal export of particulate and dissolved OC (POC and DOC, respectively) and particulate and dissolved black carbon (PBC and DBC, respectively) from five coastal mountain watersheds following the 2020 CZU Lightning Complex Fires (California, USA). Despite high variability in watershed burn extent (20–98%), annual POC, DOC, PBC, and DBC concentrations remained relatively stable among the different watersheds. Instead, they correlated significantly with watershed discharge. Our findings indicate that hydrology, rather than burn extent, is a primary driver of post‐fire carbon export in coastal mountain watersheds. 
    more » « less
  2. Abstract Pyrogenic organic residues from wildfires and anthropogenic combustion are ubiquitous in the environment and susceptible to leaching from soils into rivers, where they are known as dissolved black carbon (DBC). Here we quantified and isotopically characterized DBC from the second largest river on Earth, the Congo, using 12 samples collected across three annual hydrographs from 2010 to 2012. We find that the Congo River exports an average of 803 ± 84 Gg‐C as DBC per year, comprising 7.5% of the river's average annual dissolved organic carbon (DOC) flux (10.7 ± 1.2 Tg‐C yr−1). Concentrations of DBC were strongly correlated with discharge and DOC concentration, indicating transport limitation for DBC flux from the Congo River Basin. Stable carbon isotopic signatures of DBC revealed a seasonal shift in pyrogenic source from forest dominant to an increasing contribution from savannah biomass, which derives from the North‐South bimodal hydrologic regime within the basin. Our results also indicate that black carbon produced within the Congo Basin is exported by the river on relatively short time scales and that total DBC export will increase with climate change predictions for the central African region. 
    more » « less
  3. Abstract Carbon export out of the surface ocean via the biological pump is a critical sink for atmospheric carbon dioxide. This process transports organic carbon to the deep ocean through sinking particulate organic carbon (POC) and the downward transport of suspended POC and dissolved organic carbon (DOC). Changes in the relative contribution of each pathway can significantly affect the magnitude and efficiency of carbon export to depth. Net community production (NCP), an analog of carbon export under steady state assumptions, is typically estimated using budgets of biologically important chemical tracers in the upper ocean constrained by ship‐board or autonomous platform observations. In this study, we use measurements from biogeochemical profiling floats, the Ocean Station Papa mooring, and recently developed algorithms for carbonate system parameters to constrain budgets for three tracers (nitrate, dissolved inorganic carbon, and total alkalinity) and estimate NCP in the Northeast Pacific from 2009 to 2017. Using our multiple‐tracer approach, and constraining end‐member nutrient ratios of the POC and DOC produced, we not only calculate regional NCP throughout the annual cycle and across multiple depth horizons, but also partition this quantity into particulate and dissolved portions. We also use a particle backscatter‐based approach to estimate POC attenuation with depth and present a new method to constrain particle export across deeper horizons and estimate in situ export efficiency. Our results agree well with previously published estimates of regional carbon export annually and suggest that the approaches presented here could be used to assess the magnitude and efficiency of carbon export in other regions of the world's oceans. 
    more » « less
  4. Abstract Inland waters receive large quantities of dissolved organic carbon (DOC) from soils and act as conduits for the lateral transport of this terrestrially derived carbon, ultimately storing, mineralizing, or delivering it to oceans. The lateral DOC flux plays a crucial role in the global carbon cycle, and numerous models have been developed to estimate the DOC export from different landscapes. We reviewed 34 published models and compared their characteristics to identify challenges in model applications and opportunities for future model development. We classified these models into three types: indicator-driven, hydrology-forced, and process-based DOC export simulation models. They differ mainly in their environmental inputs, simulation approaches for soil DOC production, leaching from soils to inland waters, and transit through inland waters. It is essential to consider landscape characteristics, climate conditions, available data, and research questions when selecting the most appropriate model. Given the substantial assumptions associated with these models, sufficient measurements are required to benchmark estimates. Accurate accounting of terrestrially derived DOC export to oceans requires incorporating the DOC produced in aquatic ecosystems and deposited with rainwater; otherwise, global export estimates may be overestimated by 40.7%. Additionally, improving the representation of mineralization and burial processes in inland waters allows for more accurate accounting of carbon sequestration through land ecosystems. When all the inland water processes are ignored or assuming DOC leaching is equivalent to DOC export, the loss of soil carbon through this lateral flux could be underestimated by 43.9%. 
    more » « less
  5. Climate warming is expected to mobilize northern permafrost and peat organic carbon (PP-C), yet magnitudes and system specifics of even current releases are poorly constrained. While part of the PP-C will degrade at point of thaw to CO 2 and CH 4 to directly amplify global warming, another part will enter the fluvial network, potentially providing a window to observe large-scale PP-C remobilization patterns. Here, we employ a decade-long, high-temporal resolution record of 14 C in dissolved and particulate organic carbon (DOC and POC, respectively) to deconvolute PP-C release in the large drainage basins of rivers across Siberia: Ob, Yenisey, Lena, and Kolyma. The 14 C-constrained estimate of export specifically from PP-C corresponds to only 17 ± 8% of total fluvial organic carbon and serves as a benchmark for monitoring changes to fluvial PP-C remobilization in a warming Arctic. Whereas DOC was dominated by recent organic carbon and poorly traced PP-C (12 ± 8%), POC carried a much stronger signature of PP-C (63 ± 10%) and represents the best window to detect spatial and temporal dynamics of PP-C release. Distinct seasonal patterns suggest that while DOC primarily stems from gradual leaching of surface soils, POC reflects abrupt collapse of deeper deposits. Higher dissolved PP-C export by Ob and Yenisey aligns with discontinuous permafrost that facilitates leaching, whereas higher particulate PP-C export by Lena and Kolyma likely echoes the thermokarst-induced collapse of Pleistocene deposits. Quantitative 14 C-based fingerprinting of fluvial organic carbon thus provides an opportunity to elucidate large-scale dynamics of PP-C remobilization in response to Arctic warming. 
    more » « less