skip to main content


Search for: All records

Award ID contains: 2230812

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Key Points Modeled dissolved organic carbon export was 18.4 Tg C yr ‐1 (median) from 1982‐2019 for the six largest Arctic Rivers Proportional contributions of chromophoric to total dissolved organic carbon (CDOC & DOC) are positively correlated with water discharge Increasing discharge and shifting seasonality, independent of other factors, would have increased CDOC and DOC export from 1982‐2019 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Key Points Mackenzie River biogeochemical discharge decreases the southeastern Beaufort Sea carbon sink Terrestrial dissolved inorganic carbon (DIC) is the primary driver of outgassing events in the SBS, followed by terrestrial DOC Interannual variability in river discharge modulates localized air‐sea CO 2 flux 
    more » « less
    Free, publicly-accessible full text available April 28, 2024
  4. Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), δ 13 C, and Δ 14 C signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Δ 14 C age is enhanced by splitting soil sources into shallow and deep pools (mean ± SD: −228 ± 211 vs. −492 ± 173‰) rather than traditional active layer and permafrost pools (−300 ± 236 vs. −441 ± 215‰) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO 2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (~7%) increase in aquatic biomass POM flux with warming would be equivalent to a ~30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system. 
    more » « less
  5. Abstract. Across the Arctic, vast areas of permafrost are being degraded by climatechange, which has the potential to release substantial quantities ofnutrients, including nitrogen into large Arctic rivers. These rivers heavilyinfluence the biogeochemistry of the Arctic Ocean, so it is important tounderstand the potential changes to rivers from permafrost degradation. Thisstudy utilized dissolved nitrogen species (nitrate and dissolved organicnitrogen (DON)) along with nitrogen isotope values (δ15N-NO3- and δ15N-DON) of samples collectedfrom permafrost sites in the Kolyma River and the six largest Arctic rivers.Large inputs of DON and nitrate with a unique isotopically heavy δ15N signature were documented in the Kolyma, suggesting the occurrenceof denitrification and highly invigorated nitrogen cycling in the Yedomapermafrost thaw zones along the Kolyma. We show evidence for permafrost-derived DON being recycled to nitrate as it passes through the river,transferring the high 15N signature to nitrate. However, the potentialto observe these thaw signals at the mouths of rivers depends on the spatialscale of thaw sites, permafrost degradation, and recycling mechanisms. Incontrast with the Kolyma, with near 100 % continuous permafrost extent,the Ob River, draining large areas of discontinuous and sporadicpermafrost, shows large seasonal changes in both nitrate and DON isotopicsignatures. During winter months, water percolating through peat soilsrecords isotopically heavy denitrification signals in contrast with thelighter summer values when surface flow dominates. This early yeardenitrification signal was present to a degree in the Kolyma, but the abilityto relate seasonal nitrogen signals across Arctic Rivers to permafrostdegradation could not be shown with this study. Other large rivers in theArctic show different seasonal nitrogen trends. Based on nitrogen isotopevalues, the vast majority of nitrogen fluxes in the Arctic rivers is fromfresh DON sourced from surface runoff through organic-rich topsoil and notfrom permafrost degradation. However, with future permafrost thaw, otherArctic rivers may begin to show nitrogen trends similar to the Ob. Ourstudy demonstrates that nitrogen inputs from permafrost thaw can beidentified through nitrogen isotopes, but only on small spatial scales.Overall, nitrogen isotopes show potential for revealing integrated catchmentwide nitrogen cycling processes. 
    more » « less
  6. Key Points Total organic carbon export out of the delta to the ocean from April to September 2019 was 1.5 Tg C, 65% of which was dissolved organic carbon 50% and 25% of the total delta export of dissolved and particulate organic carbon crossed the 10 m isobath into the coastal ocean The breakdown of riverine organic matter increases light for phytoplankton growth in the surface ocean 100 s of kilometers into the ocean 
    more » « less
  7. Arctic landscapes are warming and becoming wetter due to changes in precipitation and the timing of snowmelt which consequently alters seasonal runoff and river discharge patterns. These changes in hydrology lead to increased mobilization and transport of terrestrial dissolved organic matter (DOM) to Arctic coastal seas where significant impacts on biogeochemical cycling can occur. Here, we present measurements of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) in the Yukon River-to-Bering Sea system and two river plumes on the Alaska North Slope which flow into the Beaufort Sea. Our sampling characterized optical and biogeochemical properties of DOM during high and low river discharge periods for the Yukon River-Bering Sea system. The average DOC concentration at the multiple Yukon River mouths ranged from a high of 10.36 mg C L -1 during the ascending limb of the 2019 freshet (late May), 6.4 mg C L -1 during the descending limb of the 2019 freshet (late June), and a low of 3.86 mg C L -1 during low river discharge in August 2018. CDOM absorption coefficient at 412 nm ( a CDOM (412)) averaged 8.23 m -1 , 5.07 m -1 , and 1.9 m -1 , respectively. Several approaches to model DOC concentration based on its relationship with CDOM properties demonstrated cross-system seasonal and spatial robustness for these Arctic coastal systems despite spanning an order of magnitude decrease in DOC concentration from the lower Yukon River to the Northern Bering Sea as well as the North Slope systems. “Snapshot” fluxes of DOC and CDOM across the Yukon River Delta to Norton Sound were calculated from our measurements and modeled water fluxes forced with upstream USGS river gauge data. Our findings suggest that during high river flow, DOM reaches the delta largely unaltered by inputs or physical and biogeochemical processing and that the transformations of Yukon River DOM largely occur in the plume. However, during low summer discharge, multiple processes including local precipitation events, microbial decomposition, photochemistry, and likely others can alter the DOM properties within the lower Yukon River and Delta prior to flowing into Norton Sound. 
    more » « less
  8. High levels of methylmercury accumulation in marine biota are a concern throughout the Arctic, where coastal ocean ecosystems received large riverine inputs of mercury (Hg) (40 Mg⋅y −1 ) and sediment (20 Tg⋅y −1 ) during the last decade, primarily from major Russian rivers. Hg concentrations in fish harvested from these rivers have declined since the late 20th century, but no temporal data on riverine Hg, which is often strongly associated with suspended sediments, were previously available. Here, we investigate temporal trends in Russian river particulate Hg (PHg) and total suspended solids (TSS) to better understand recent changes in the Arctic Hg cycle and its potential future trajectories. We used 1,300 measurements of Hg in TSS together with discharge observations made by Russian hydrochemistry and hydrology monitoring programs to examine changes in PHg and TSS concentrations and fluxes in eight major Russian rivers between ca. 1975 and 2010. Due to decreases in both PHg concentrations (micrograms per gram) and TSS loads, annual PHg export declined from 47 to 7 Mg⋅y −1 overall and up to 92% for individual rivers. Modeling of atmospheric Hg deposition together with published inventories on reservoir establishment and industrial Hg release point to decreased pollution and sedimentation within reservoirs as predominant drivers of declining PHg export. We estimate that Russian rivers were the primary source of Hg to the Arctic Ocean in the mid to late 20th century. 
    more » « less