skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gravitational wave and CMB probes of axion kination
A bstract Rotations of an axion field in field space provide a natural origin for an era of kination domination, where the energy density is dominated by the kinetic term of the axion field, preceded by an early era of matter domination. Remarkably, no entropy is produced at the end of matter domination and hence these eras of matter and kination domination may occur even after Big Bang Nucleosynthesis. We derive constraints on these eras from both the cosmic microwave background and Big Bang Nucleosynthesis. We investigate how this cosmological scenario affects the spectrum of possible primordial gravitational waves and find that the spectrum features a triangular peak. We discuss how future observations of gravitational waves can probe the viable parameter space, including regions that produce axion dark matter by the kinetic misalignment mechanism or the baryon asymmetry by axiogenesis. For QCD axion dark matter produced by the kinetic misalignment mechanism, a modification to the inflationary gravitational wave spectrum occurs above 0.01 Hz and, for high values of the energy scale of inflation, the prospects for discovery are good. We briefly comment on implications for structure formation of the universe.  more » « less
Award ID(s):
1915314
PAR ID:
10444934
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
9
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The early universe may have contained internally thermalized dark sectors that were decoupled from the Standard Model. In such scenarios, the relic dark thermal bath, composed of the lightest particle in the dark sector, can give rise to an epoch of early matter domination prior to Big Bang Nucleosynthesis, which has a potentially observable impact on the smallest dark matter structures. This lightest dark particle can easily and generically have number-changing self-interactions that give rise to “cannibal” behavior. We consider cosmologies where an initially sub-dominant cannibal species comes to temporarily drive the expansion of the universe, and we provide a simple map between the particle properties of the cannibal species and the key features of the enhanced dark matter perturbation growth in such cosmologies. We further demonstrate that cannibal self-interactions can determine the small-scale cutoff in the matter power spectrum even when the cannibal self-interactions freeze out prior to cannibal domination. 
    more » « less
  2. A bstract Ultralight dark matter is a compelling dark matter candidate. In this work, we examine the impact of quadratically-coupled ultralight dark matter on the predictions of Big Bang Nucleosynthesis. The presence of ultralight dark matter can modify the effective values of fundamental constants during Big Bang Nucleosynthesis, modifying the predicted abundances of the primordial elements such as Helium-4. We improve upon the existing literature in two ways: firstly, we take into account the thermal mass acquired by the ultralight dark matter due to its quadratic interactions with the Standard Model bath, which affects the cosmological evolution of the dark matter. Secondly, we treat the weak freeze-out using the full kinetic equations instead of using an instantaneous approximation. Both improvements were shown to impact the Helium-4 prediction in the context of universally-coupled dark matter in previous work. We extend these lessons to more general couplings. We show that with these modifications, Big Bang Nucleosynthesis provides strong constraints of ultralight dark matter with quadratic couplings to the Standard Model for a large range of masses as compared to other probes of this model, such as equivalence principle tests, atomic and nuclear clocks, as well as astrophysical and other cosmological probes. 
    more » « less
  3. A bstract We propose a baryogenenesis mechanism that uses a rotating condensate of a Peccei-Quinn (PQ) symmetry breaking field and the dimension-five operator that gives Majorana neutrino masses. The rotation induces charge asymmetries for the Higgs boson and for lepton chirality through sphaleron processes and Yukawa interactions. The dimension-five interaction transfers these asymmetries to the lepton asymmetry, which in turn is transferred into the baryon asymmetry through the electroweak sphaleron process. QCD axion dark matter can be simultaneously produced by dynamics of the same PQ field via kinetic misalignment or parametric resonance, favoring an axion decay constant f a ≲ 10 10 GeV, or by conventional misalignment and contributions from strings and domain walls with f a ∼ 10 11 GeV. The size of the baryon asymmetry is tied to the mass of the PQ field. In simple supersymmetric theories, it is independent of UV parameters and predicts the supersymmtry breaking mass scale to be $$ \mathcal{O} $$ O (10 − 10 4 ) TeV, depending on the masses of the neutrinos and whether the condensate is thermalized during a radiation or matter dominated era. The high supersymmetry breaking mass scale may be free from cosmological and flavor/CP problems. We also construct a theory where TeV scale supersymmetry is possible. Parametric resonance may give warm axions, and the radial component of the PQ field may give signals in rare kaon decays from mixing with the Higgs and in dark radiation. 
    more » « less
  4. Sunlike stars can transmute into comparable mass black holes by steadily accumulating heavy nonannihilating dark matter particles over the course of their lives. If such stars form in binary systems, they could give rise to quasi-monochromatic, persistent gravitational waves, commonly known as continuous gravitational waves, as they inspiral toward one another. We demonstrate that next-generation space-based detectors, e.g., Laser Interferometer Space Antenna (LISA) and Big Bang Observer (BBO), can provide novel constraints on dark matter parameters (dark matter mass and its interaction cross-section with the nucleons) by probing gravitational waves from transmuted sunlike stars that are in close binaries. Our projected constraints depend on several astrophysical uncertainties and nevertheless are competitive with the existing constraints obtained from cosmological measurements as well as terrestrial direct searches, demonstrating a notable science case for these space-based gravitational wave detectors as probes of particle dark matter. Published by the American Physical Society2024 
    more » « less
  5. Abstract We study the cosmological impact of warm, dark-sector relic particles produced as Hawking radiation in a primordial-black-hole-dominated universe before big bang nucleosynthesis. If these dark-sector particles are stable, they would survive to the present day asHawking relicsand modify the growth of cosmological structure. We show that such relics are produced with much larger momenta, but in smaller quantities than the familiar thermal relics considered in standard cosmology. Consequently, Hawking relics with keV–MeV masses affect the growth of large-scale structure in a similar way to eV-scale thermal relics like massive neutrinos. We model their production and evolution, and show that their momentum distributions are broader than comparable relics with thermal distributions. Warm Hawking relics affect the growth of cosmological perturbations and we constrain their abundance to be less than 2% of the dark matter over a broad range of their viable parameter space. Finally, we examine how future measurements of the matter power spectrum can distinguish Hawking relics from thermal particles. 
    more » « less