skip to main content

Title: Cannibalism's lingering imprint on the matter power spectrum
Abstract The early universe may have contained internally thermalized dark sectors that were decoupled from the Standard Model. In such scenarios, the relic dark thermal bath, composed of the lightest particle in the dark sector, can give rise to an epoch of early matter domination prior to Big Bang Nucleosynthesis, which has a potentially observable impact on the smallest dark matter structures. This lightest dark particle can easily and generically have number-changing self-interactions that give rise to “cannibal” behavior. We consider cosmologies where an initially sub-dominant cannibal species comes to temporarily drive the expansion of the universe, and we provide a simple map between the particle properties of the cannibal species and the key features of the enhanced dark matter perturbation growth in such cosmologies. We further demonstrate that cannibal self-interactions can determine the small-scale cutoff in the matter power spectrum even when the cannibal self-interactions freeze out prior to cannibal domination.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract The standard model Higgs quartic coupling vanishes at (10 9 − 10 13 ) GeV. We study SU(2) L × SU(2) R × U(1) B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, v R . Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2) R × U(1) B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require v R to be in the range (10 10 − 10 13 ) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires v R ≳ 10 9 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy. 
    more » « less
  2. The standard model of particle physics accurately describes all particle physics measurements made so far in the laboratory. However, it is unable to answer many questions that arise from cosmological observations, such as the nature of dark matter and why matter dominates over antimatter throughout the Universe. Theories that contain particles and interactions beyond the standard model, such as models that incorporate supersymmetry, may explain these phenomena. Such particles appear in the vacuum and interact with common particles to modify their properties. For example, the existence of very massive particles whose interactions violate time-reversal symmetry, which could explain the cosmological matter–antimatter asymmetry, can give rise to an electric dipole moment along the spin axis of the electron. No electric dipole moments of fundamental particles have been observed. However, dipole moments only slightly smaller than the current experimental bounds have been predicted to arise from particles more massive than any known to exist. Here we present an improved experimental limit on the electric dipole moment of the electron, obtained by measuring the electron spin precession in a superposition of quantum states of electrons subjected to a huge intramolecular electric field. The sensitivity of our measurement is more than one order of magnitude better than any previous measurement. This result implies that a broad class of conjectured particles, if they exist and time-reversal symmetry is maximally violated, have masses that greatly exceed what can be measured directly at the Large Hadron Collider. 
    more » « less
  3. Abstract If dark matter resides in a hidden sector minimally coupled to the Standard Model, another particle within the hidden sector might dominate the energy density of the early universe temporarily, causing an early matter-dominated era (EMDE). During an EMDE, matter perturbations grow more rapidly than they would in a period of radiation domination, which leads to the formation of microhalos much earlier than they would form in standard cosmological scenarios. These microhalos boost the dark matter annihilation signal, but this boost is highly sensitive to the small-scale cut-off in the matter power spectrum. If the dark matter is sufficiently cold, this cut-off is set by the relativistic pressure of the particle that dominates the hidden sector. We determine the evolution of dark matter density perturbations in this scenario, obtaining the power spectrum at the end of the EMDE. We analyze the suppression of perturbations due to the relativistic pressure of the dominant hidden sector particle and express the cut-off scale and peak scale for which the matter power spectrum is maximized in terms of the properties of this particle. We also supply transfer functions to relate the matter power spectrum with a small-scale cut-off resulting from the pressure of the dominant hidden sector particle to the matter power spectrum that results from a cold hidden sector. These transfer functions facilitate the quick computation of accurate matter power spectra in EMDE scenarios with initially hot hidden sectors and allow us to identify which models significantly enhance the microhalo abundance. 
    more » « less
  4. Abstract It is shown that a decaying neutralino in a supergravity unified framework is a viable candidate for dark matter. Such a situation arises in the presence of a hidden sector with ultraweak couplings to the visible sector where the neutralino can decay into the hidden sector’s lightest supersymmetric particle (LSP) with a lifetime larger than the lifetime of the universe. We present a concrete model where the MSSM/SUGRA is extended to include a hidden sector comprised of $$U(1)_{X_1} \times U(1)_{X_2}$$ U ( 1 ) X 1 × U ( 1 ) X 2 gauge sector and the LSP of the hidden sector is a neutralino which is lighter than the LSP neutralino of the visible sector. We compute the loop suppressed radiative decay of the visible sector neutralino into the neutralino of the hidden sector and show that the decay can occur with a lifetime larger than the age of the universe. The decaying neutralino can be probed by indirect detection experiments, specifically by its signature decay into the hidden sector neutralino and an energetic gamma ray photon. Such a gamma ray can be searched for with improved sensitivity at Fermi-LAT and by future experiments such as the Square Kilometer Array (SKA) and the Cherenkov Telescope Array (CTA). We present several benchmarks which have a natural suppression of the hadronic channels from dark matter annihilation and decays and consistent with measurements of the antiproton background. 
    more » « less

    The fuzzy dark matter (FDM) scenario has received increased attention in recent years due to the small-scale challenges of the vanilla Lambda cold dark matter (ΛCDM) cosmological model and the lack of any experimental evidence for any candidate particle. In this study, we use cosmological N-body simulations to investigate high-redshift dark matter haloes and their responsiveness to an FDM-like power spectrum cutoff on small scales in the primordial density perturbations. We study halo density profiles, shapes, and alignments in FDM-like cosmologies (the latter two for the first time) by providing fits and quantifying departures from ΛCDM as a function of the particle mass m. Compared to ΛCDM, the concentrations of FDM-like haloes are lower, peaking at an m-dependent halo mass and thus breaking the approximate universality of density profiles in ΛCDM. The intermediate-to-major and minor-to-major shape parameter profiles are monotonically increasing with ellipsoidal radius in N-body simulations of ΛCDM. In FDM-like cosmologies, the monotonicity is broken, haloes are more elongated around the virial radius than their ΛCDM counterparts and less elongated closer to the centre. Finally, intrinsic alignment correlations, stemming from the deformation of initially spherically collapsing haloes in an ambient gravitational tidal field, become stronger with decreasing m. At z ∼ 4, we find a 6.4σ-significance in the fractional differences between the isotropized linear alignment magnitudes Diso in the m = 10−22 eV model and ΛCDM. Such FDM-like imprints on the internal properties of virialized haloes are expected to be strikingly visible in the high-z Universe.

    more » « less