skip to main content


Title: An Observed Trend Between Mid‐Latitudes Km‐Scale Irregularities and Medium‐Scale Traveling Ionospheric Disturbances
Abstract

We describe observations of a trend between the level of km‐scale irregularity activity and the amplitudes of medium‐scale traveling ionospheric disturbances (MSTIDs) at mid‐latitudes using data from December 2019 through June 2021. These include measurements of both heigh‐specific and vertically integrated quantities. Region‐specific, bottom‐side measurements were made with the dynasonde system near Wallops Island (WI) and included phase structure function parameters related to km‐scale irregularities as well as height‐specific tilts/density gradients, which are especially sensitive to MSTIDs. A complementary data set was derived from the nearby Deployable Low‐band Ionosphere and Transient Experiment (DLITE) array in southern Maryland. The DLITE array was used to measure the vertically integrated irregularity index,CkL, via scintillometry of bright cosmic radio sources at 35 MHz. Transverse gradients in the line‐of‐sight total electron content (TEC) were also measured with DLITE using apparent shifts in the sources' sky positions. Relatively simple layer‐based models for the vertical distribution of km‐scale irregularities applied to dynasonde‐measured properties yielded results that correlated well with DLITE measurements ofCkL. Similarly, spectral analysis showed that fluctuation amplitudes of vertically integrated bottom‐side density gradients derived from dynasonde data were well correlated with DLITE TEC gradient measurements. A significant trend was found betweenCkLand TEC gradient MSTID amplitudes among DLITE‐based data as well as among the extrapolated dynasonde measurements. Additionally, within the bottom‐side F‐region, irregularity levels were found to be well correlated with fluctuation amplitudes for the tilt as measured with the WI dynasonde.

 
more » « less
Award ID(s):
1643119
NSF-PAR ID:
10444966
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Radio Science
Volume:
57
Issue:
5
ISSN:
0048-6604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The quiet time ionospheric plasma bubbles that occur almost every day become a significant threat for radio frequency (RF) signal degradation that affects communication and navigation systems. We have analyzed multi‐instrument observations to determine the driving mechanism for quiet time bubbles and to answer the longstanding problem, what controls the longitudinal and seasonal dependence of ionospheric irregularity occurrence rate? While VHF scintillation and GNSS ROTI are used to characterize irregularity occurrence, the vertical drifts from JRO and IVM onboard C/NOFS, as well as gravity waves (GWs) amplitudes, extracted SABER temperature profiles, are utilized to identify the potential driving mechanism for the generation of small‐scale plasma density irregularities. We demonstrated that the postsunset vertical drift enhancement may not always be a requirement for the generation of equatorial plasma bubbles. The tropospheric GWs with a vertical wavelength (4 km < λv < 30 km) can also penetrate to higher altitudes and provide enough seeding to the bottom side ionosphere and elicit density irregularity. This paper, using a one‐to‐one comparison between GWs amplitudes and irregularity occurrence distributions, also demonstrated that the GWs seeding plays a critical role in modulating the longitudinal dependence of equatorial density irregularities. Thus, it is becoming increasingly clear that understanding the forcing from a lower thermosphere is critically essential for the modeling community to predict and forecast the day‐to‐day and longitudinal variabilities of ionospheric irregularities and scintillations.

     
    more » « less
  2. Abstract

    Total electron content (TEC) and L‐band scintillations measured by several networks of GPS and GNSS receivers that operate in South and Central America and the Caribbean region are used to observe the morphology of the equatorial ionization anomaly (EIA), examine the evolution of plasma bubbles, and investigate the enhancement of L‐band scintillations that occurred on February 12 and 13, 2016. A few weak and short magnetic storms developed these days, and a minor sudden stratospheric warming (SSW) event was initiated a few days before. During these unusual conditions, TEC maps reported a split of the otherwise continuous crests of the EIA and the formation of a large‐scale (thousands of kilometers) almost‐circular structure. The western part of the southern crest faded, and a north‐south aligned segment developed near the center of the South American continent, joining the north and south crests of the EIA, forming an anomaly that resembled a closed loop on the eastern side of the continent. Concurrently with the anomaly events, several GPS stations reported increases in the L‐band scintillation index from 0.4 to values greater than 1. We analyzed TEC values from receivers between ±6° from the magnetic equator to identify and follow TEC depletions associated with plasma bubbles when they reach different stations. Although the magnetic activity was moderate (Kp = 3°), we believe that the anomaly redistribution and the scintillation enhancements are not related to a prompt penetration electric field but to enhancing the semidiurnal lunar tide propitiated by the onset of the minor SSW event. We found that depending on the lunar tide phase cycle, the neutral wind's meridional component can augment sub‐km scale irregularities and enhance L‐band scintillations through the wind gradient instability when U·n < 0 or the action of wind gradients (U) within the bubbles. Our observations imply that the SSW event enables prominent changes in the thermosphere wind system at F‐region altitudes.

     
    more » « less
  3. Abstract

    Medium‐scale Traveling Ionospheric Disturbances (MSTIDs) are prominent and ubiquitous features of the mid‐latitude ionosphere, and are observed in Super Dual Auroral Radar Network (SuperDARN) and high‐resolution Global Navigational Satellite Service (GNSS) Total Electron Content (TEC) data. The mechanisms driving these MSTIDs are an open area of research, especially during geomagnetic storms. Previous studies have demonstrated that nightside MSTIDs are associated with an electrodynamic instability mechanism like Perkins, especially during geomagnetically quiet conditions. However, dayside MSTIDs are often associated with atmospheric gravity waves. Very few studies have analyzed the mechanisms driving MSTIDs during strong geomagnetic storms at mid‐latitudes. In this study, we present mid‐latitude MSTIDs observed in de‐trended GNSS TEC data and SuperDARN radars over the North American sector, during a geomagnetic storm (peakKpreaching 9) on 7–8 September 2017. In SuperDARN, MSTIDs were observed in ionospheric backscatter with Line of Sight (LOS) velocities exceeding 800 m/s. Additionally, radar LOS velocities oscillated with amplitudes reaching ±500 m/s as the MSTIDs passed through the fields‐of‐view. In detrended TEC, these MSTIDs produced perturbations reaching ∼50 percent of background TEC magnitude. The MSTIDs were observed to propagate in the westward/south‐westward direction with a time period of ∼15 min. Projecting de‐trended GNSS TEC data along SuperDARN beams showed that enhancements in TEC were correlated with enhancements in SuperDARN SNR and positive LOS velocities. Finally, SuperDARN LOS velocities systematically switched polarities between the crests and the troughs of the MSTIDs, indicating the presence of polarization electric fields and an electrodynamic instability process during these MSTIDs.

     
    more » « less
  4. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). 
    more » « less
  5. Abstract

    The effect of eastward zonal wind speed (EZWS) on vertical drift velocity (E × Bdrift) that mainly controls the equatorial ionospheric irregularities has been explained theoretically and through numerical models. However, its effect on the seasonal and longitudinal variations ofE × Band the accompanying irregularities has not yet been investigated experimentally due to lack ofF‐layer wind speed measurements. Observations of EZWS from GOCE and ion density andE × Bfrom C/NOFS satellites for years 2011 and 2012 during quite times are used in this study. Monthly and longitudinal variations of the irregularity occurrence,E × B, and EZWS show similar patterns. We find that at most 50.85% of longitudinal variations ofE × Bcan be explained by the longitudinal variability of EZWS only. When the EZWS exceeds 150 m/s, the longitudinal variation of EZWS, geomagnetic field strength, and Pedersen conductivity explain 56.40–69.20% of the longitudinal variation ofE × B. In Atlantic, Africa, and Indian sectors, from 42.63% to 79.80% of the monthly variations of theE × Bcan be explained by the monthly variations of EZWS only. It is found also that EZWS andE × Bmay be linearly correlated during fall equinox and December solstice. The peak occurrence of irregularity in the Atlantic sector during November and December is due to the combined effect of large wind speed, solar terminator‐geomagnetic field alignment, and small geomagnetic field strength and Pedersen conductivity. Moreover, during June solstices, small EZWS corresponds to vertically downwardE × B, which suggests that other factors dominate theE × Bdrift rather than the EZWS during these periods.

     
    more » « less