skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tropical Cyclone Outer Size Impacts the Number and Location of Tornadoes
Abstract There remains no consensus on whether the outer size of the tropical cyclone (TC) wind field impacts tornado occurrence. This study statistically examines the relationship between TC outer size with both the number and location of tornadoes using multidecadal tornado reports, a reanalysis‐derived TC outer size metric, and radiosonde data. These results show that larger TC spawn tornadoes that are located farther from and over a broader region relative to the cyclone center, although these changes do not entirely scale with TC outer size. Larger TCs are also associated with more frequent occurrence of tornadoes per 6 h, especially enhanced numbers of tornadoes. These changes in tornado occurrence in larger TCs may be due to a broadening of favorable helicity for tornadoes in the downshear sector, which may be partially offset by CAPE reductions in the left‐of‐shear quadrants.  more » « less
Award ID(s):
2050267 2028151
PAR ID:
10445000
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
24
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work investigates how the relationship between tropical cyclone (TC) tornadoes and ambient (i.e., synoptic-scale) deep-tropospheric (i.e., 850–200-hPa) vertical wind shear (VWS) varies between coastal and inland environments. Observed U.S. TC tornado track data are used to study tornado frequency and location, while dropsonde and radiosonde data are used to analyze convective-scale environments. To study the variability in the TC tornado–VWS relationship, these data are categorized by both 1) their distance from the coast and 2) reanalysis-derived VWS magnitude. The analysis shows that TCs produce coastal tornadoes regardless of VWS magnitude primarily in their downshear sector, with tornadoes most frequently occurring in strongly sheared cases. Inland tornadoes, including the most damaging cases, primarily occur in strongly sheared TCs within the outer radii of the downshear-right quadrant. Consistent with these patterns, dropsondes and coastal radiosondes show that the downshear-right quadrant of strongly sheared TCs has the most favorable combination of enhanced lower-tropospheric near-surface speed shear and veering, and reduced lower-tropospheric thermodynamic stability for tornadic supercells. Despite the weaker intensity farther inland, these kinematic conditions are even more favorable in inland environments within the downshear-right quadrant of strongly sheared TCs, due to the strengthened veering of the ambient winds and the lack of changes in the TC outer tangential wind field strength. The constructive superposition of the ambient and TC winds may be particularly important to inland tornado occurrence. Together, these results will allow forecasters to anticipate how the frequency and location of tornadoes and, more broadly, convection may change as TCs move inland. 
    more » « less
  2. Abstract Tropical cyclone (TC) tornadoes are often associated with lower‐skill forecasts compared to midlatitude supercellular tornadoes. Forecasts may be improved through a greater understanding of their lightning and radar signatures. This study investigates the lightning and radar characteristics of TC tornadic cells for comparison with TC non‐tornadic cells (i.e., strongly rotating cells without tornadoes) and non‐TC tornadic cells using three lightning networks and radar data. These results show that the majority of TC tornadic and non‐tornadic cells are not associated with lightning, although the former subset occurs with lightning more often. TC tornadic cases typically have lightning maximized to its northeast, whereas the non‐tornadic subset is associated with a lower density of flashes that are more symmetrically distributed. TC tornadic mesocyclones also show stronger low‐level rotation and convergence at the time of tornado occurrence compared to non‐tornadic cases. Hourly trends in rotation and convergence show stronger increases before tornado occurrence in both variables for TC tornadic mesocyclones, yielding small, nonsignificant differences with non‐TC tornadic mesocyclones during tornado occurrence. Finally, analysis of lightning throughout the TC shows that tornadic cells often occur on the downwind edge of a broad lightning maximum, whereas non‐tornadic cases occur in the middle of a weaker lightning maximum, with these maxima propagating away from the TC in both subsets. 
    more » « less
  3. Abstract While many modeling studies have attempted to estimate how tropical cyclone (TC) precipitation is impacted by climate change, the multitude of analysis techniques and methodologies have resulted in varying conclusions. Simplified models may be able to help overcome this problem. Radiative‐convective equilibrium (RCE) model simulations have been used in various configurations to study fundamental aspects of Earth's climate. While many RCE modeling studies have focused on TC genesis, intensification, and size, limited work has been done using RCE to study TC precipitation. In this study, the response of TC precipitation to sea surface temperature (SST) change is analyzed in global Community Atmosphere Model (CAM) aquaplanet simulations run with Radiative‐Convective Equilibrium Model Intercomparison Project protocols, with the addition of planetary rotation. We expect that the insight gained about how TC precipitation responds to SST warming will help predict how TCs in the real world respond to climate change. In the CAM RCE simulations, the warmer SST simulations have less TCs on average, but the TCs tend to be larger in outer size and more intense. As simulation SST increases, more extreme precipitation rates occur within TCs, and more of the TC precipitation comes from these extreme rates. For extreme (99th percentile) TC precipitation, SST, and TC intensity increases dominate the 8.6% per K increase, while TC outer size changes have little impact. For accumulated TC precipitation, SST, and TC intensity contributions are still the majority, but TC outer size changes also contribute to the 6.6% per K increase. 
    more » « less
  4. The impact of extratropical transition (ET) on tropical cyclone (TC) tornadoes is not fully understood with no prior tornado climatologies for ET cases. Hence, this study investigates how ET impacts tornadoes and convective-scale environments within TCs using multidecadal tornado and radiosonde data from North Atlantic TCs. This research divides ET into three phases: tropical (i.e., pre-ET), transition (i.e., during ET), and extratropical (i.e., post-ET). These results show that the largest portion of tornadoes occurs before and during ET, with the greatest frequencies during ET. As TCs progress through ET, tornado location shifts north and east in the United States but farther south or more strongly downshear right relative to the TC center. Tornadoes also tend to occur later in the day and are more likely to be associated with greater damage. Evaluation of radiosondes shows that the downshear-right quadrant of the TC is frequently the most favorable for tornado production, with sufficient entrainment CAPE (ECAPE) and strong storm-relative helicity (SRH). Specifically, the downshear-right quadrant shows slower decreases in ECAPE (associated with synoptic-scale cooling and drying) and increased SRH and associated lower-tropospheric vertical wind shear through ET, relative to the other quadrants relative to the deep-tropospheric (i.e., 850–200-hPa) vertical wind shear vector. These results inform the physical model and prediction of ET-related TC structure, both in terms of their convective-scale environments and subsequent hazard production. 
    more » « less
  5. Abstract Prior research has shown that tropical cyclone (TC) size, which is integral in determining the spatial extent of TC impacts, is influenced by environmental wind shear and the overall moisture environment. This study considers North Atlantic TCs located within low to moderate wind shear and at least 100 km from major landmasses. An empirical orthogonal function (EOF) analysis is applied to distinguish moisture environments based on the spatial pattern of total column water vapor surrounding the TC. Using these EOF patterns, four separate categories (groups) are created. Principal component scores indicate the TC samples most contributing to each EOF pattern and ultimately determine the cases in each group. TC structural differences among the groups are compared using size metrics based on the wind and precipitation fields and shape metrics based on the precipitation field. These metrics are considered across a 48‐hr window centered on the sample times evaluated in the EOF analysis. There are no statistically significant differences in the TC wind field size, but TCs with abundant moisture to the southeast have larger rain areas with more outer rainbands. TCs in a dry environment or with dry air southeast of the TC center have generally smaller rain areas and less closed rainbands than TCs with moisture to the southeast. Future work will investigate the physical processes contributing to these spatial differences in precipitation. 
    more » « less