skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A half century of fish gonadotropin‐releasing hormones: Breaking paradigms
Abstract The field of fish gonadotropin‐releasing hormones (GnRHs) is also celebrating its 50th anniversary this year. This review provides a chronological history of fish GnRH biology over the past five decades. It demonstrates how discoveries in fish regarding GnRH and GnRH receptor multiplicity, dynamic interactions between GnRH neurons, and additional neuroendocrine factors acting alongside GnRH, amongst others, have driven a paradigm shift in our understanding of GnRH systems and functions in vertebrates, including mammals. The role of technological innovations in enabling scientific discoveries is portrayed, as well as how fundamental research in fish GnRH led to translational outcomes in aquaculture. The interchange between fish and mammalian GnRH research is discussed, as is the value and utility of using fish models for advancing GnRH biology. Current challenges and future perspectives are presented, with the hope of expanding the dialogue and collaborations within the neuroendocrinology scientific community at large, capitalizing on diversifying model animals and the use of comparative strategies.  more » « less
Award ID(s):
1947541
PAR ID:
10445008
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Neuroendocrinology
Volume:
34
Issue:
5
ISSN:
0953-8194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Life histories of oviparous species dictate high metabolic investment in the process of gonadal development leading to ovulation. In vertebrates, these two distinct processes are controlled by the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH), respectively. While it was suggested that a common secretagogue, gonadotropin-releasing hormone (GnRH), oversees both functions, the generation of loss-of-function fish challenged this view. Here we reveal that the satiety hormone cholecystokinin (CCK) is the primary regulator of this axis in zebrafish. We found that FSH cells express a CCK receptor, and our findings demonstrate that mutating this receptor results in a severe hindrance to ovarian development. Additionally, it causes a complete shutdown of both gonadotropins secretion. Using in-vivo and ex-vivo calcium imaging of gonadotrophs, we show that GnRH predominantly activates LH cells, whereas FSH cells respond to CCK stimulation, designating CCK as the bona fide FSH secretagogue. These findings indicate that the control of gametogenesis in fish was placed under different neural circuits, that are gated by CCK. 
    more » « less
  2. Abstract This perspective derives from the presentations and discussions on mechanobiology at the 2025 Cellular and Molecular Bioengineering Conference in San Diego. Mechanobiological processes play critical roles in tissue development, regeneration, and disease progression. Recent advances in engineering, biology, and medicine have enabled the translation of mechanobiology discoveries into clinical practice, giving rise to the emerging field of mechanomedicine. The development and application of engineering technology and tools have provided new insights into how mechanical cues regulate immune cell response, stem cell differentiation, cell migration, and cell metabolism. In this perspective, we highlight exciting discoveries and innovative tools in mechanobiology research, and discuss challenges that must be overcome to truly bridge the gap between mechanobiology and mechanomedicine. Graphical Abstract 
    more » « less
  3. Abstract Vasoactive intestinal peptide (Vip) regulates luteinizing hormone (LH) release through the direct regulation of gonadotropin-releasing hormone (GnRH) neurons at the level of the brain in female rodents. However, little is known regarding the roles of Vip in teleost reproduction. Although GnRH is critical for fertility through the regulation of LH secretion in vertebrates, the exact role of the hypophysiotropic GnRH (GnRH3) in zebrafish is unclear since GnRH3 null fish are reproductively fertile. This phenomenon raises the possibility of a redundant regulatory pathway(s) for LH secretion in zebrafish. Here, we demonstrate that VipA (homologues of mammalian Vip) both inhibits and induces LH secretion in zebrafish. Despite the observation that VipA axons may reach the pituitary proximal pars distalis including LH cells, pituitary incubation with VipA in vitro, and intraperitoneal injection of VipA, did not induce LH secretion and lhβ mRNA expression in sexually mature females, respectively. On the other hand, intracerebroventricular administration of VipA augmented plasma LH levels in both wild-type and gnrh3-/- females at 1 hour posttreatment, with no observed changes in pituitary GnRH2 and GnRH3 contents and gnrh3 mRNA levels in the brains. While VipA’s manner of inhibition of LH secretion has yet to be explored, the stimulation seems to occur via a different pathway than GnRH3, dopamine, and 17β-estradiol in regulating LH secretion. The results indicate that VipA induces LH release possibly by acting with or through a non-GnRH factor(s), providing proof for the existence of functional redundancy of LH release in sexually mature female zebrafish. 
    more » « less
  4. Abstract Research in captive birds and mammals has demonstrated that circadian (i.e., daily) behavioral rhythms are altered in response to increases in sex-steroid hormones. Recently, we and others have demonstrated a high degree of individual repeatability in peak (gonadotropin-releasing hormone [GnRH]-induced sex) steroid levels, and we have found that these GnRH-induced levels are highly correlated with their daily (night-time) endogenous peak. Whether or not individual variation in organization and activity of the reproductive endocrine axis is related to daily timing in wild animals is not well known. To begin to explore these possible links, we tested the hypothesis that maximal levels of the sex steroid hormone estradiol (E2) and onset of daily activity are related in a female songbird, the dark-eyed junco (Junco hyemalis). We found that females with higher levels of GnRH-induced E2 departed from their nest in the morning significantly earlier than females with lower stimulated levels. We did not observe a relationship between testosterone and this measure of onset of activity. Our findings suggest an interaction between an individual’s reproductive endocrine axis and the circadian system and variation observed in an individuals’ daily activity onset. We suggest future studies examine the relationship between maximal sex-steroid hormones and timing of daily activity onset. 
    more » « less
  5. Abstract Arabidopsis thaliana is currently the most-studied plant species on earth, with an unprecedented number of genetic, genomic, and molecular resources having been generated in this plant model. In the era of translating foundational discoveries to crops and beyond, we aimed to highlight the utility and challenges of using Arabidopsis as a reference for applied plant biology research, agricultural innovation, biotechnology, and medicine. We hope that this review will inspire the next generation of plant biologists to continue leveraging Arabidopsis as a robust and convenient experimental system to address fundamental and applied questions in biology. We aim to encourage laboratory and field scientists alike to take advantage of the vast Arabidopsis datasets, annotations, germplasm, constructs, methods, and molecular and computational tools in our pursuit to advance understanding of plant biology and help feed the world's growing population. We envision that the power of Arabidopsis-inspired biotechnologies and foundational discoveries will continue to fuel the development of resilient, high-yielding, nutritious plants for the betterment of plant and animal health and greater environmental sustainability. 
    more » « less