skip to main content

Title: Grain‐Boundary‐Rich Noble Metal Nanoparticle Assemblies: Synthesis, Characterization, and Reactivity

Here, a comprehensive study on the synthesis, characterization, and reactivity of grain‐boundary (GB)‐rich noble metal nanoparticle (NP) assemblies is presented. A facile and scalable synthesis of Pt, Pd, Au, Ag, and Rh NP assemblies is developed, in which NPs are predominantly connected via Σ3 (111) twin GBs, forming a network. Driven by water electrolysis, the random collisions and oriented attachment of colloidal NPs in solution lead to the formation of Σ3 (111) twin boundaries and some highly mismatched GBs. This synthetic method also provides convenient control over the GB density without altering the crystallite size or GB type by varying the NP collision frequency. The structural characterization reveals the presence of localized tensile strain at the GB sites. The ultrahigh activity of GB‐rich Pt NP assembly toward catalytic hydrogen oxidation in air is demonstrated, enabling room‐temperature catalytic hydrogen sensing for the first time. Finally, density functional theory calculations reveal that the strained Σ3(111) twin boundary facilitates oxygen dissociation, drastically enhancing the hydrogen oxidation rate via the dissociative pathway. This reported large‐scale synthesis of the Σ3 (111) twin GB‐rich structures enables the development of a broad range of high‐performance GB‐rich catalysts.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Grain boundary (GB) structural change is commonly observed during and after stress-driven GB migration in nanocrystalline materials, but its exact atomic scale transformation has not been explored experimentally. Here, using in situ high-resolution transmission electron microscopy combined with molecular dynamics simulations, we observed the dynamic GB structural transformation stemming from reversible facet transformation and GB dissociation during the shear-mediated migration of faceted GBs in gold nanocrystals. A reversible transformation was found to occur between (002)/(111) and Σ11(113) GB facets, accomplished by the coalescence and detachment of(1¯1¯1)/(002)-type GB steps or disconnections that mediated the GB migration. In comparison, the dissociation of (002)/(111) GB into Σ11(113) and Σ3(111) GBs occurred via the reaction of(111)/(111¯)-type steps that involved the emission of partial dislocations. Furthermore, these transformations were loading dependent and could be accommodated by GB junctions. This work provides atomistic insights into the dynamic structural transformation during GB migration.

    more » « less
  2. Abstract

    Uniform-size, non-native oxide-passivated metallic aluminum nanoparticles (Al NPs) have desirable properties for fuel applications, battery components, plasmonics, and hydrogen catalysis. Nonthermal plasma-assisted synthesis of Al NPs was previously achieved with an inductively coupled plasma (ICP) reactor, but the low production rate and limited tunability of particle size were key barriers to the applications of this material. This work focuses on the application of capacitively coupled plasma (CCP) to achieve improved control over Al NP size and a ten-fold increase in yield. In contrast with many other materials, where NP size is controlled via the gas residence time in the reactor, the Al NP size appeared to depend on the power input to the CCP system. The results indicate that the CCP reactor assembly, with a hydrogen-rich argon/hydrogen plasma, was able to produce Al NPs with diameters that were tunable between 8 and 21 nm at a rate up ∼ 100 mg h−1. X-ray diffraction indicates that a hydrogen-rich environment results in crystalline metal Al particles. The improved synthesis control of the CCP system compared to the ICP system is interpreted in terms of the CCP’s lower plasma density, as determined by double Langmuir probe measurements, leading to reduced NP heating in the CCP that is more amenable to NP nucleation and growth.

    more » « less
  3. Abstract

    Some of ultrafine-grained (UFG) metals including UFG twinning induced plasticity (TWIP) steels have been found to overcome the paradox of strength and ductility in metals benefiting from their unique deformation modes. Here, this study provides insights into the atomistic process of deformation twin nucleation at Σ3{111} twin boundaries, the dominant type of grain boundary in this UFG high manganese TWIP steel. In response to the applied tensile stresses, grain boundary sliding takes place which changes the structure of coherent Σ3{111} twin boundary from atomistically smooth to partly defective. High resolution transmission electron microscopy demonstrates that the formation of disconnection on Σ3{111} twin boundaries is associated with the motion of Shockley partial dislocations on the boundaries. The twin boundary disconnections act as preferential nucleation sites for deformation twin that is a characteristic difference from the coarse-grained counterpart, and is likely correlated with the lethargy of grain interior dislocation activities, frequently seen in UFG metals. The deformation twin nucleation behavior will be discussed based on in-situ TEM deformation experiments and nanoscale strain distribution analyses results.

    more » « less
  4. Abstract

    In polycrystalline materials, grain boundaries are known to be a critical microstructural component controlling material’s mechanical properties, and their characters such as misorientation and crystallographic boundary planes would also influence the dislocation dynamics. Nevertheless, many of generally used mechanistic models for deformation twin nucleation in fcc metal do not take considerable care of the role of grain boundary characters. Here, we experimentally reveal that deformation twin nucleation occurs at an annealing twin (Σ3{111}) boundary in a high-Mn austenitic steel when dislocation pile-up at Σ3{111} boundary produced a local stress exceeding the twining stress, while no obvious local stress concentration was required at relatively high-energy grain boundaries such as Σ21 or Σ31. A periodic contrast reversal associated with a sequential stacking faults emission from Σ3{111} boundary was observed by in-situ transmission electron microscopy (TEM) deformation experiments, proving the successive layer-by-layer stacking fault emission was the deformation twin nucleation mechanism, different from the previously reported observations in the high-Mn steels. Since this is also true for the observed high Σ-value boundaries in this study, our observation demonstrates the practical importance of taking grain boundary characters into account to understand the deformation twin nucleation mechanism besides well-known factors such as stacking fault energy and grain size.

    more » « less
  5. In this report, density functional theory (DFT) calculations of O and OH binding energies on triatomic surface ensembles of Pd x Ir (100−x) nanoalloys successfully predicted the overall trend in experimental oxygen reduction reaction (ORR) activity as a function of nanoparticle (NP) composition. Specifically, triatomic Pd 3 ensembles were found to possess optimal O and OH binding energies and were predicted to be highly active sites for the ORR, rivaling that of Pt(111). However, DFT calculations suggest that the O binding energy increases at active sites containing Ir, thereby decreasing ORR activity. Pd x Ir (100−x) nanoalloys were synthesized using a microwave-assisted method and their activity towards the ORR was tested using rotating disk voltammetry (RDV). As predicted, the bimetallic electrocatalysts exhibited worse catalytic activity than the Pd-only NPs. The strong qualitative correlation between the theoretical and experimental results demonstrates that the activity of individual active sites on the surface of NPs can serve as a proxy for overall activity. This is a particularly useful strategy for applying DFT calculations to electrocatalysts that are too large for true first-principle analysis. 
    more » « less