Grain growth in polycrystals is traditionally considered a capillarity-driven process, where grain boundaries (GBs) migrate toward their centers of curvature (i.e., mean curvature flow) with a velocity proportional to the local curvature (including extensions to account for anisotropic GB energy and mobility). Experimental and simulation evidence shows that this simplistic view is untrue. We demonstrate that the failure of the classical mean curvature flow description of grain growth mainly originates from the shear deformation naturally coupled with GB motion (i.e., shear coupling). Our findings are built on large-scale microstructure evolution simulations incorporating the fundamental (crystallography-respecting) microscopic mechanism of GB migration. The nature of the deviations from curvature flow revealed in our simulations is consistent with observations in recent experimental studies on different materials. This work also demonstrates how to incorporate the mechanical effects that are essential to the accurate prediction of microstructure evolution.
more »
« less
This content will become publicly available on April 1, 2026
The effect of local geometry and relative energy on grain boundary area changes during grain growth in SrTiO 3
Abstract This study uses high‐energy X‐ray diffraction microscopy of SrTiO3to identify correlations between grain boundary (GB) area changes and the motion direction of neighboring GBs to investigate interfacial energy minimization mechanisms during grain growth. The local GB area changes were measured near triple lines (TLs) to isolate the effects of neighboring GBs. These area changes were then correlated to the migration direction and curvature of the neighboring GBs present at the TL, providing an alternative metric associated with lateral expansion for describing GB migration. Additionally, this study extracted GB dihedral angles, which reflect the relative GB energy, to test whether low energy GBs replace high energy GBs (i.e., GB replacement mechanism) and, thus, can be used to predict a GB's migration direction. The majority of GBs did not exhibit local area changes reflective of the GB replacement mechanism, and the dihedral angles were not reliable indicators of GB motion. However, the expansion and shrinkage of GBs moving away from their center of curvature was more often consistent with the grain boundary replacement mechanism. These results suggest that growth for certain GB configurations is governed by relative energy differences while others are governed by curvature.
more »
« less
- Award ID(s):
- 2118945
- PAR ID:
- 10612018
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of the American Ceramic Society
- Volume:
- 108
- Issue:
- 4
- ISSN:
- 0002-7820
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study investigates the influence of thermal history on grain boundary (GB) energy and the grain growth behavior of SrTiO3at 1425°C. Two thermal profiles were explored: (1) a single‐step sintering at 1425°C for 1 h and (2) a two‐step profile with sintering completed at 1425°C for 1 h with an additional 10 h at 1350°C. Electron backscattered diffraction and atomic force microscopy were utilized to measure the grain size and GB energy distributions, respectively, for the samples before and after grain growth at 1425°C for 10 h. The two‐step profile exhibits fewer abnormal grains and a slower growth rate at 1425°C than the single‐step profile. Additionally, the two‐step sample comprises few high‐energy GBs and a narrow GB energy distribution, which suggests that it had a lower driving force for subsequent grain growth. The thermal profile was able to sufficiently change the growth rate such that the two‐step sample results in a finer grain size than observed for the single‐step sample after 10 h at 1425°C despite being exposed to elevated temperatures for almost twice as long. These results suggest that GB energy engineering through thermal profile modification can be used to control the grain growth rate and abnormal grain growth likelihood.more » « less
-
Molecular dynamics (MD) simulations are applied to study solute drag by curvature-driven grain boundaries (GBs) in Cu–Ag solid solution. Although lattice diffusion is frozen on the MD timescale, the GB significantly accelerates the solute diffusion and alters the state of short-range order in lattice regions swept by its motion. The accelerated diffusion produces a nonuniform redistribution of the solute atoms in the form of GB clusters enhancing the solute drag by the Zener pinning mechanism. This finding points to an important role of lateral GB diffusion in the solute drag effect. A 1.5 at.%Ag alloying reduces the GB free energy by 10–20% while reducing the GB mobility coefficients by more than an order of magnitude. Given the greater impact of alloying on the GB mobility than on the capillary driving force, kinetic stabilization of nanomaterials against grain growth is likely to be more effective than thermodynamic stabilization aiming to reduce the GB free energy.more » « less
-
If variety is the spice of life, then abnormal grain growth (AGG) may be the materials processing equivalent of sriracha sauce. Abnormally growing grains can be prismatic, dendritic, or practically any shape in between. When they grow at least an order of magnitude larger than their neighbors in the matrix—a state we call extreme AGG—we can examine the abnormal/matrix interface for clues to the underlying mechanism. Simulating AGG for various formulations of the grain boundary (GB) equation of motion, we show that anisotropies in GB mobility and energy leave a characteristic fingerprint in the abnormal/matrix boundary. Except in the case of prismatic growth, the morphological signature of most reported instances of AGG is consistent with a certain degree of GB mobility variability. Open questions remain, however, concerning the mechanism by which the corresponding growth advantage is established and maintained as the GBs of abnormal grains advance through the matrix. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
-
Nanocrystalline (NC) materials are intrinsically unstable against grain growth. Significant research efforts have been dedicated to suppressing the grain growth by solute segregation, including the pursuit of a special NC structure that minimizes the total free energy and completely eliminates the driving force for grain growth. This fully stabilized state has been predicted theoretically and by simulations but is yet to be confirmed experimentally. To better understand the nature of the full stabilization, we propose a simple two-dimensional model capturing the coupled processes of grain boundary (GB) migration and solute diffusion. Kinetic Monte Carlo simulations based on this model reproduce the fully stabilized polycrystalline state and link it to the condition of zero GB free energy. The simulations demonstrate the emergence of a fully stabilized state by the divergence of capillary wave amplitudes on planar GBs and by fragmentation of a large grain into a stable ensemble of smaller grains. The role of solute diffusion in the full stabilization is examined. Possible extensions of the model are discussed.more » « less
An official website of the United States government
