skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Champions and Traditional Technocrats: The Role of Environmental Value Orientation in Stormwater Management
Abstract The paper examines relationships between stormwater control measure (SCM) priorities and environmental value orientations among stormwater managers in Cleveland, Ohio and Denver, Colorado, metro regions with contrasting environmental conditions and policy contexts. While studies show that governance explains differences in broad SCM priorities, less is known about what motivates individual “street level bureaucrats” who influence decisions at the project level. Drawing from cognitive social science perspectives, this study surveyed stormwater professionals (n = 185) about primary and co‐benefit SCM priorities and environmental value orientation. Results revealed different primary SCM priorities by region: Cleveland and Denver respondents prioritized quantity and quality goals, respectively, reflecting regional context. Co‐benefit priorities correlated to two environmental value orientation clusters — “Traditional Technocrats” with relatively anthropocentric orientations and “Champions” with relatively ecocentric orientations — who were equally abundant in both regions. Findings suggest that environmental value orientation influences co‐benefit priorities, which may have implications for project level articulation of policy.  more » « less
Award ID(s):
1805340 1805319
PAR ID:
10445030
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
JAWRA Journal of the American Water Resources Association
Volume:
58
Issue:
3
ISSN:
1093-474X
Page Range / eLocation ID:
p. 336-354
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As stormwater control measures (SCMs) capture surface runoff from impervious areas, a shift in the water balance and flow regime components may emerge in urban watersheds, but the amount of SCM treatment needed to detectably shift these components may vary. We used the Soil and Water Assessment Tool (SWAT) hydrologic model to assess the sensitivity of 16 hydrologic metrics as an increasingly dense rain garden SCM network was applied across the West Creek watershed, near Cleveland, Ohio (USA). As the area treated by SCMs increased, annual baseflow increases matched decreases in surface runoff, while water yield and evapotranspiration changes remained small. The stream's peak response to rainfall decreased with SCM implementation across storm sizes, ranging from the threshold rainfall depth (4.8 mm) to values higher than the design storm of a single rain garden (19 mm). SCM networks draining >20% of directly connected impervious area (DCIA) significantly decreased the magnitude of discharges with a return period of less than 1 year, the percentage of time above mean flow, and flashiness. Recession slopes and annual 1‐ and 7‐day low flows exhibited a slight response that fell within uncertainty limits of the model. Water balance and rainfall response metrics exhibited the greatest sensitivity to different intensities of stormwater management, while infrequent high and low flows were resistant to detectable change even at high levels of SCM treatment when model uncertainty was included. 
    more » « less
  2. Abstract Since the 1987 Clean Water Act Section 319 amendment, the US Government has required and funded the development of nonpoint source pollution programs with about $5 billion dollars. Despite these expenditures, nonpoint source pollution from urban watersheds is still a significant cause of impaired waters in the United States. Urban stormwater management has rapidly evolved over recent decades with decision-making made at a local or city scale. To address the need for a better understanding of how stormwater management has been implemented in different cities, we used stormwater control measure (SCM) network data from 23 US cities and assessed what physical, climatic, socioeconomic, and/or regulatory explanatory variables, if any, are related to SCM assemblages at the municipal scale. Spearman’s correlation and Wilcoxon rank-sum tests were used to investigate relationships between explanatory variables and SCM types and assemblages of SCMs in each city. The results from these analyses showed that for the cities assessed, physical explanatory variables (e.g. impervious percentage and depth to water table) explained the greatest portion of variability in SCM assemblages. Additionally, it was found that cities with combined sewers favored filters, swales and strips, and infiltrators over basins, and cities that are under consent decrees with the Environmental Protection Agency tended to include filters more frequently in their SCM inventories. Future work can build on the SCM assemblages used in this study and their explanatory variables to better understand the differences and drivers of differences in SCM effectiveness across cities, improve watershed modeling, and investigate city- and watershed-scale impacts of SCM assemblages. 
    more » « less
  3. Abstract Although understanding nutrient limitation of primary productivity in lakes is among the oldest research priorities in limnology, there have been few broad‐scale studies of the characteristics of phosphorus (P)‐, nitrogen (N)‐, and co‐limited lakes and their environmental context. By analyzing 3342 US lakes with concurrent P, N, and chlorophylla(Chla) samples, we showed that US lakes are predominantly co‐limited (43%) or P‐limited (41%). Majorities of lakes were P‐limited in the Northeast, Upper Midwest, and Southeast, and co‐limitation was most prevalent in the interior and western United States. N‐limitation (16%) was more prevalent than P‐limitation in the Great Basin and Central Plains. Nutrient limitation was related to lake, watershed, and regional variables, including Chlaconcentration, watershed soil, and wet nitrate deposition. N and P concentrations interactively affected nutrient–chlorophyll relationships, which differed by nutrient limitation. Our study demonstrates the value of considering P, N, and environmental context in nutrient limitation and nutrient–chlorophyll relationships. 
    more » « less
  4. Water quality sensors were placed in 3 urban streams in Cleveland, OH and 4 urban streams in Denver, CO to estimate stream metabolism and assess response to high flow events. MiniDOT (dissolved oxygen and temperature) and Onset (specific conductance) sensors were placed mid-channel near USGS gages. Light was measured as global horizontal irradiance (GHI) and supplied by SolCast. Data collection was part of the NSF STORMS project (PI Jefferson, co-PIs Costello, Bhaskar, Turner). Specific conductance, dissolved oxygen, and light were measured every 10 minutes. Sensors were removed during winter months to avoid damage. Datasets were cleaned to remove values when sensors were out of water, buried, and removed for maintenance/calibration. 
    more » « less
  5. In 2021, Environmental Science & Technology convened an ACS Global Webinara on green stormwater infrastructure (GSI) as a tool for environmental justice. Since then, we researchers have continued to discuss advancing GSI science, practice, and priorities. The U.S. Environmental Protection Agency (1) describes green infrastructure as “the range of measures that use plant or soil systems, permeable pavement or other permeable surfaces or substrates, stormwater harvest and reuse, or landscaping to store, infiltrate, or evapotranspirate stormwater and reduce flows to sewer systems or to surface waters.” GSI systems use a variety of names both within the United States and worldwide (e.g., low-impact development, sponge cities, water sensitive cities) and encompasses concepts from physical stormwater design/management practices to sustainable urban planning and urban ecology. (2,3) GSI and, more broadly, other nature-based solutions offer possibilities for improving urban hydrologic function and water quality while providing multiple co-benefits; (4) however, we contend the most important benefit is as a tool to advance environmental justice (EJ). Indeed, if these benefits lack intentionality in process and placement to repair past harms, we miss the greatest opportunity of all. Here we present summarized thoughts concerning strengths, weaknesses and threats, and opportunities for GSI (Figure 1). 
    more » « less