skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Greatest Opportunity for Green Stormwater Infrastructure Is to Advance Environmental Justice
In 2021, Environmental Science & Technology convened an ACS Global Webinara on green stormwater infrastructure (GSI) as a tool for environmental justice. Since then, we researchers have continued to discuss advancing GSI science, practice, and priorities. The U.S. Environmental Protection Agency (1) describes green infrastructure as “the range of measures that use plant or soil systems, permeable pavement or other permeable surfaces or substrates, stormwater harvest and reuse, or landscaping to store, infiltrate, or evapotranspirate stormwater and reduce flows to sewer systems or to surface waters.” GSI systems use a variety of names both within the United States and worldwide (e.g., low-impact development, sponge cities, water sensitive cities) and encompasses concepts from physical stormwater design/management practices to sustainable urban planning and urban ecology. (2,3) GSI and, more broadly, other nature-based solutions offer possibilities for improving urban hydrologic function and water quality while providing multiple co-benefits; (4) however, we contend the most important benefit is as a tool to advance environmental justice (EJ). Indeed, if these benefits lack intentionality in process and placement to repair past harms, we miss the greatest opportunity of all. Here we present summarized thoughts concerning strengths, weaknesses and threats, and opportunities for GSI (Figure 1).  more » « less
Award ID(s):
1844720
PAR ID:
10510519
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Environmental Science & Technology
Volume:
57
Issue:
48
ISSN:
0013-936X
Page Range / eLocation ID:
19088 to 19093
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Livability, resilience, and justice in cities are challenged by climate change and the historical legacies that together create disproportionate impacts on human communities. Urban green infrastructure has emerged as an important tool for climate change adaptation and resilience given their capacity to provide ecosystem services such as local temperature regulation, stormwater mitigation, and air purification. However, realizing the benefits of ecosystem services for climate adaptation depend on where they are locally supplied. Few studies have examined the potential spatial mismatches in supply and demand of urban ecosystem services, and even fewer have examined supply–demand mismatches as a potential environmental justice issue, such as when supply–demand mismatches disproportionately overlap with certain socio-demographic groups. We spatially analyzed demand for ecosystem services relevant for climate change adaptation and combined results with recent analysis of the supply of ecosystem services in New York City (NYC). By quantifying the relative mismatch between supply and demand of ecosystem services across the city we were able to identify spatial hot- and coldspots of supply–demand mismatch. Hotspots are spatial clusters of census blocks with a higher mismatch and coldspots are clusters with lower mismatch values than their surrounding blocks. The distribution of mismatch hot- and coldspots was then compared to the spatial distribution of socio-demographic groups. Results reveal distributional environmental injustice of access to the climate-regulating benefits of ecosystem services provided by urban green infrastructure in NYC. Analyses show that areas with lower supply–demand mismatch tend to be populated by a larger proportion of white residents with higher median incomes, and areas with high mismatch values have lower incomes and a higher proportion of people of color. We suggest that urban policy and planning should ensure that investments in “nature-based” solutions such as through urban green infrastructure for climate change adaptation do not reinforce or exacerbate potentially existing environmental injustices. 
    more » « less
  2. Green stormwater infrastructure (GSI) is advocated for its potential to provide multiple ecosystem services, including stormwater runoff mitigation, wildlife habitat, and aesthetic value. However, the provision of these ecosystem services depends on both facility design and maintenance, which may vary based on whether GSI was installed to fulfill regulatory construction permit requirements or implemented voluntarily as part of urban greening initiatives. We evaluated 76 GSI facilities distributed across Baltimore, MD, USA, comprising 48 voluntary and 28 regulatory facilities. Each facility was scored on indicators related to the provision of stormwater, habitat, and aesthetic ecosystem services. Ecosystem service scores were highly variable, reflecting a wide range of quality and condition, but we found no significant differences between scores for regulatory and voluntary GSI. However, voluntary GSI scores tended to be higher in areas with greater socioeconomic status, while regulatory facilities showed an inverse relationship. Our findings indicate that GSI facilities can degrade quickly, and that official maintenance requirements for regulatory facilities do not guarantee upkeep. Regulatory requirements did have better outcomes in areas with lower socioeconomic status, though. Degraded GSI facilities may do more harm than good, becoming both unsightly and ineffective at providing intended stormwater or habitat benefits. 
    more » « less
  3. null (Ed.)
    Green infrastructure (GI) has become a panacea for cities working to enhance sustainability and resilience. While the rationale for GI primarily focuses on its multifunctionality (e.g. delivering multiple ecosystem services to local communities), uncertainties remain around how, for whom, and to what extent GI delivers these services. Additionally, many scholars increasingly recognize potential disservices of GI, including gentrification associated with new GI developments. Building on a novel dataset of 119 planning documents from 19 U.S. cities, we utilize insights from literature on justice in urban planning to examine the justice implications of criteria used in the siting of GI projects. We analyze the GI siting criteria described in city plans and how they explicitly or implicitly engage environmental justice. We find that justice is rarely explicitly discussed, yet the dominant technical siting criteria that focus on stormwater and economic considerations have justice implications. We conclude with recommendations for centering justice in GI spatial planning. 
    more » « less
  4. null (Ed.)
    Green stormwater infrastructure (GSI) is increasingly used to reduce stormwater input to the subsurface stormwater network. This work investigated how GSI interacts with surface runoff and stormwater structures to affect the spatial extent and distribution of roadway flooding and subsequent effects on the performance of the traffic system using a dual-drainage model. The model simulated roadway flooding using PCSWMM (Personal Computer Stormwater Management Model) in Harvard Gulch, Denver, Colorado, and was then used in a microscopic traffic simulation using the Simulation of Urban Mobility Model (SUMO). We examined the effect of converting between 1% and 5% of directly connected impervious area (DCIA) to bioretention GSI on roadway flooding. The results showed that even for 1% of DCIA converted to GSI, the extent and mean depth of roadway flooding was reduced. Increasing GSI conversion further reduced roadway flooding depth and extent, although with diminishing returns per additional percentage of DCIA converted to GSI. Reduced roadway flooding led to increased average vehicle speeds and decreased percentage of roads impacted by flooding and total travel time. We found diminishing returns in the roadway flooding reduction per additional percentage of DCIA converted to GSI. Future work will be conducted to reduce the main limitations of insufficient data for model validation. Detailed dual-drainage modeling has the potential to better predict what GSI strategies will mitigate roadway flooding. 
    more » « less
  5. Abstract Green infrastructure (GI) practices improve stormwater quality and reduce urban flooding, but as urban hydrology is highly controlled by its associated gray infrastructure (e.g., stormwater pipe network), GI's watershed‐scale performance depends on its siting within its associated watershed. Although many stormwater practitioners have begun considering GI's spatial configuration within a larger watershed, few approaches allow for flexible scenario exploration, which can untangle GI's interaction with gray infrastructure network and assess its effects on watershed hydrology. To address the gap in integrated gray‐green infrastructure planning, we used an exploratory model to examine gray‐green infrastructure performance using synthetic stormwater networks with varying degrees of flow path meandering, informed by analysis on stormwater networks from the Minneapolis‐St. Paul Metropolitan Area, MN, USA. Superimposed with different coverage and placements of GI (e.g., bioretention cells), these gray‐green stormwater networks are then subjected to different rainfall intensities within Environmental Protection Agency's Storm Water Management Model to simulate their hydrological benefits (e.g., peak flow reduction, flood reduction). Although only limited choices of green and gray infrastructure were explored, the results show that the gray infrastructure's spatial configuration can introduce tradeoffs between increased peak flow and increased flooding, and further interacts with GI coverage and placement to reduce peak flow and flooding at low rainfall intensity. However, as rainfall intensifies, GI ceases to reduce peak flow. For integrated gray‐green infrastructure planning, our results suggest that physical constraints of the stormwater networks and the range of rainfall intensities must be considered when implementing GI. 
    more » « less