skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Morphology of pig nasal structure and modulation of airflow and basic thermal conditioning
Abstract Mammals have presumably evolved to adapt to a diverse range of ambient environmental conditions through the optimized heat and mass exchange. One of the crucial biological structures for survivability is the nose, which efficiently transports and thermally preconditions the external air before reaching the internal body. Nasal mucosa and cavity help warm and humidify the inhaled air quickly. Despite its crucial role, the morphological features of mammal noses and their effect in modulating the momentum of the inhaled air, heat transfer dynamics, and particulate trapping remain poorly understood. Tortuosity of the nasal cavity in high-olfactory mammalian species, such as pigs and opossum, facilitates the formation of complex airflow patterns inside the nasal cavity, which leads to the screening of particulates from the inhaled air. We explored basic nasal features in anatomically realistic nasal pathways, including tortuosity, radius of curvature, and gap thickness; they show strong power-law correlations with body weight. Complementary inspection of tortuosity with idealized conduits reveals that this quantity is central in particle capture efficiency. Mechanistic insights into such nuances can serve as a tipping point to transforming nature-based designs into practical applications. In-depth characterization of the fluid–particle interactions in nasal cavities is necessary to uncover nose mechanistic functionalities. It is instrumental in developing new devices and filters in a number of engineering processes.  more » « less
Award ID(s):
2028075
PAR ID:
10445067
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative And Comparative Biology
Volume:
63
Issue:
2
ISSN:
1540-7063
Format(s):
Medium: X Size: p. 304-314
Size(s):
p. 304-314
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fluid-mechanics research has focused primarily on droplets/aerosols being expelled from infected individuals and transmission of well-mixed aerosols indoors. However, aerosol collisions with susceptible hosts earlier in the spread, as well as aerosol deposition in the nasal cavity, have been relatively overlooked. In this paper, two simple fluid models are presented to gain a better understanding of the collision and deposition between a human and aerosols. The first model is based on the impact of turbulent diffusion coefficients and air flow in a room on the collisions between aerosols and humans. Infection rates can be determined based on factors such as air circulation and geometry as an infection zone expands from an infected host. The second model clarifies how aerosols of different sizes adhere to different parts of the respiratory tract. Based on the inhalation rate and the nasal cavity shape, the critical particle size and the deposition location can be determined. Our study offers simple fluid models to understand the effects of geometric factors and air flows on the aerosol transmission and deposition. 
    more » « less
  2. Abstract Nasal anatomy in rodents is well-studied, but most current knowledge is based on small-bodied muroid species. Nasal anatomy and histology of hystricognaths, the largest living rodents, remains poorly understood. Here, we describe the nasal cavity of agoutis ( Dasyprocta spp.), the first large-bodied South American rodents to be studied histologically throughout the nasal cavity. Two adult agoutis were studied using microcomputed tomography, and in one of these, half the snout was serially sectioned and stained for microscopic study. Certain features are notable in Dasyprocta . The frontal recess has five turbinals within it, the most in this space compared to other rodents that have been studied. The nasoturbinal is particularly large in dorsoventral and rostrocaudal dimensions and is entirely non-olfactory in function, in apparent contrast to known muroids. Whether this relates solely to body size scaling or perhaps also relates to directing airflow or conditioning inspired air requires further study. In addition, olfactory epithelium appears more restricted to the olfactory and frontal recesses compared to muroids. At the same time, the rostral tips of the olfactory turbinals bear at least some non-olfactory epithelium. The findings of this study support the hypothesis that turbinals are multifunctional structures, indicating investigators should use caution when categorizing turbinals as specialized for one function (e.g., olfaction or respiratory air-conditioning). Caution may be especially appropriate in the case of large-bodied mammals, in which the different scaling characteristics of respiratory and olfactory mucosa result in relative more of the former type as body size increases. 
    more » « less
  3. Synopsis A dog's nose differs from a human's in that air does not change direction but flows in a unidirectional path from inlet to outlet. Previous simulations showed that unidirectional flow through a dog’s complex nasal passageways creates stagnant zones of trapped air. We hypothesize that these zones give the dog a “physical memory,” which it may use to compare recent odors to past ones. In this study, we conducted experiments with our previously built Gaseous Recognition Oscillatory Machine Integrating Technology (GROMIT) and performed corresponding simulations in two dimensions. We compared three settings: a control setting that mimics the bidirectional flow of the human nose; a short-circuit setting where odors exit before reaching the sensors; and a unidirectional configuration using a dedicated inlet and outlet that mimics the dog’s nose. After exposure to odors, the sensors in the unidirectional setting showed the slowest return to their baseline level, indicative of memory effects. Simulations showed that both short-circuit and unidirectional flows created trapped recirculation zones, which slowed the release of odors from the chamber. In the future, memory effects such as the ones found here may improve the sensitivity and utility of electronic noses. 
    more » « less
  4. Abstract ObjectivesAlthough ecogeographic variation in human nasal morphology is commonly attributed to climatic adaptation, recent research into the “respiratory‐energetics hypothesis” has suggested that metabolic demands for oxygen intake may influence overall nasal size. Here, we further test the respiratory‐energetics hypothesis and investigate potential interactions between metabolic and climatic pressures on human nasal morphology. Materials and MethodsThis study employed computed tomography (CT) scans of 79 mixed‐sex crania derived from an extreme cold‐dry locale (Point Hope, Alaska). In conjunction with basal metabolic rate (BMR, kcal/day) estimates derived from associated femoral head diameter measurements, 41 cranial three‐dimensional (3D) coordinate landmarks and 17 linear measurements were employed in multivariate analyses to test for associations between metabolic demands and nasal/facial morphology across and within the sexes. ResultsOverall nasal size was found to be significantly correlated with BMR both across and within the sexes, with higher metabolic demands predictably associated with larger noses. However, associations between BMR and overall nasal size were found to be predominantly driven by nasal passage height and length dimensions, with the Arctic sample exhibiting minimal (non‐dimorphic) variation in nasal passage breadths. Accordingly, significant correlations between BMR and 3D nasal shape were also identified. DiscussionOur study provides additional support for the respiratory‐energetics hypothesis, while providing insights into potential metabolic and climatic constraints on specific nasal dimensions. In particular, our results suggest that climatic pressures on nasal passage breadths for heat/moisture transfers may necessitate compensatory changes in passage heights (and developmentally‐linked lengths) to maintain sufficient air intake to meet metabolic requirements. 
    more » « less
  5. Abstract Nasal turbinals, delicate and complex bones of the nasal cavity that support respiratory or olfactory mucosa (OM), are now easily studied using high resolution micro‐computed tomography (μ‐CT). Standard μ‐CT currently lacks the capacity to identify OM or other mucosa types without additional radio‐opaque staining techniques. However, even unstained mucosa is more radio‐opaque than air, and thus mucosal thickness can be discerned. Here, we assess mucosal thickness of the nasal fossa using the cranium of a cadaveric adult dog that was μ‐CT scanned with an isotropic resolution of 30 μm, and subsequently histologically sectioned and stained. After co‐alignment of μ‐CT slice planes to that of histology, mucosal thickness was estimated at four locations. Results based on either μ‐CT or histology indicate olfactory mucosa is thicker on average compared with non‐olfactory mucosa (non‐OM). In addition, olfactory mucosa has a lesser degree of variability than the non‐OM. Variability in the latter appears to relate mostly to the varying degree of vascularity of the lamina propria. Because of this, in structures with both specialized vascular respiratory mucosa and OM, such as the first ethmoturbinal (ET I), the range of thickness of OM and non‐OM may overlap. Future work should assess the utility of diffusible iodine‐based contrast enhanced CT techniques, which can differentiate epithelium from the lamina propria, to enhance our ability to differentiate mucosa types on more rostral ethmoturbinals. This is especially critical for structures such as ET I, which have mixed functional roles in many mammals. 
    more » « less