skip to main content


Title: Elevated inbreeding in Heliconia tortuosa is determined by tropical forest stand age, isolation and loss of hummingbird functional diversity
Abstract

Forest conversion and habitat loss are major threats to biological diversity. Forest regeneration can mitigate the negative effects of old‐growth forest loss on species diversity, but less is known about the extent to which forest loss reduces genetic diversity in remnant populations and whether secondary forests play a role in the maintenance of genetic diversity. We quantified genetic diversity in a tropical hummingbird‐pollinated understorey herb,Heliconia tortuosa, across a landscape mosaic of primary and secondary forest regrowth. Using microsatellite genotypes from >850 adult and juvenile plants within 33 forest patches and extensive bird surveys, we examined the effect of contemporary and historical landscape features including forest age (primary vs. secondary forest), stand isolation and pollinator assemblages on genetic diversity and levels of inbreeding inH. tortuosa. We found that inbreeding was up to three times higher in secondary forest, and this effect was amplified with reductions in primary forest in the surrounding landscape through reduced observed heterozygosity in isolated fragments. Inbreeding in forest patches was negatively correlated with the local frequency of specialist long‐distance foraging traplining hummingbirds. Traplining hummingbirds therefore appear to facilitate mating among unrelated plants—an inference we tested using empirically parameterized simulations. Higher levels of inbreeding inH. tortuosaare therefore associated with reduced functional diversity of hummingbirds in secondary forests and forest patches isolated from primary forests. Our findings suggest a cryptic consequence of primary forest loss and secondary forest regeneration through the disruption of mutualistic interactions resulting in the erosion of genetic diversity in a common understorey plant.

 
more » « less
NSF-PAR ID:
10445130
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
31
Issue:
17
ISSN:
0962-1083
Page Range / eLocation ID:
p. 4465-4477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Deforestation can impact the quality of pollen received by target plants (i.e. delivery of incompatible pollen, self‐pollen or pollen from closely related individuals). Such reductions in plant mating quality may be direct, when deforestation reduces plant population size and the availability of pollen donors, or indirect, when decreased mating quality results, for example, from shifts in the composition of the pollinator community. As most flowering plants depend on animal pollinators for reproduction, there is a need to understand the direct and indirect links between deforestation, pollinator community composition and plant mating quality.

    We quantified the direct, pollen donor‐mediated and indirect, pollinator‐mediated effects of deforestation on mating quality inHeliconia tortuosa, a tropical herb pollinated by low‐ and high‐mobility hummingbirds. We used a confirmatory path analysis to test the hypothesis that deforestation (amount of forest cover and forest patch size) influenced mating quality (haplotype diversity of pollen pools, outcrossing and biparental inbreeding) directly and indirectly through functional shifts in the composition of pollinator communities (proportion of high‐mobility hummingbirds).

    We found that deforestation triggered functional shifts in the composition of pollinator communities, as the proportion of high‐mobility hummingbirds increased significantly with the amount of forest cover and forest patch size. The composition of the pollinator community affected mating quality, as the haplotype diversity of pollen pools increased significantly with the proportion of high‐mobility hummingbirds, while biparental inbreeding decreased significantly. Although we did not detect any significant direct, pollen donor‐mediated effects of deforestation on mating quality, reductions in the amount of forest cover and forest patch size resulted in functional shifts that filtered out high‐mobility hummingbirds from the pollinator community, thereby reducing mating quality indirectly.

    Synthesis. Deforestation primarily influenced plant mating quality through a cascading effect mediated by functional shifts in the composition of the pollinator community. Our results indicate that plant mating quality strongly depends on the composition of local pollinator communities. Functional shifts that filter out highly mobile and effective pollinators may reduce the transfer of genetically diverse pollen loads from unrelated plants. Such shifts may have pronounced effects on plant population dynamics and disrupt genetic connectivity.

     
    more » « less
  2. Abstract

    Large terrestrial herbivorous mammals (LTH‐mammals) influence plant community structure by affecting seedling establishment in mature tropical forests. Many of these LTH‐mammals frequent secondary forests, but their effects on seedling establishment in them are understudied, hindering our understanding of how LTH‐mammals influence forest regeneration in human‐modified landscapes.

    We tested the hypothesis that the strength of LTH‐mammals' effects on seedling establishment depends on landscape protection, forest successional stage and plant species' traits using a manipulative field experiment in six 1‐ha sites with varying successional age and landscape protection. In each site, we established 40 seedling plot‐pairs, with one plot excluding LTH‐mammals and one not, and monitored seedlings of 116 woody species for 26 months.

    We found significant effects of LTH‐mammal exclusion on seedling survival contingent upon the protection of forests at the landscape level and forest stage. After 26 months, survival differences between LTH‐mammal exclusion and non‐exclusion treatments were greater in protected than unprotected landscapes. Additionally, plant species' traits were related to the LTH‐mammals' differential effects, as LTH‐mammals reduced the survival of seedlings of larger‐seeded species the most. Overall, LTH‐mammals' effects translated into significant shifts in community composition as seedling communities inside and outside the exclosures diverged. Moreover, lower density and higher species diversity were found as early as 12 and 18 months outside than inside exclosures.

    Synthesis and applications.Insight into the interactions between LTH‐mammals and seedling communities in forest regeneration can be instrumental in planning effective restoration efforts. We highlight the importance of landscape protection in seedling survival and the role of LTH‐mammals in promoting seedling diversity in mature forests but also in secondary successional forests. The findings suggest that conservation efforts and possibly trophic rewilding can be important approaches for preserving diversity and influencing the trajectory of secondary tropical forest succession. However, we also caution that an overabundance of LTH‐mammals may adversely impact the pace of forest succession due to their preference for large‐seeded species. Therefore, a comprehensive wildlife management plan is indispensable. Additionally, longer term studies on LTH‐mammals are necessary to understand the effects of temporal fluctuations that are undetected in short‐term studies.

     
    more » « less
  3. Abstract

    Landscape features often shape patterns of gene flow and genetic differentiation in plant species. Populations that are small and isolated enough also become subject to genetic drift. We examined patterns of gene flow and differentiation among 12 floodplain populations of the selfing annual jewelweed (Impatiens capensisMeerb.) nested within four river systems and two major watersheds in Wisconsin, USA. Floodplain forests and marshes provide a model system for assessing the effects of habitat fragmentation within agricultural/urban landscapes and for testing whether rivers act to genetically connect dispersed populations. We generated a panel of 12,856 single nucleotide polymorphisms and assessed genetic diversity, differentiation, gene flow, and drift. Clustering methods revealed strong population genetic structure with limited admixture and highly differentiated populations (mean multilocusFST = 0.32,FST’ = 0.33). No signals of isolation by geographic distance or environment emerged, but alleles may flow along rivers given that genetic differentiation increased with river distance. Differentiation also increased in populations with fewer private alleles (R2 = 0.51) and higher local inbreeding (R2 = 0.22). Populations varied greatly in levels of local inbreeding (FIS = 0.2–0.9) andFISincreased in more isolated populations. These results suggest that genetic drift dominates other forces in structuring theseImpatienspopulations. In rapidly changing environments, species must migrate or genetically adapt. Habitat fragmentation limits both processes, potentially compromising the ability of species to persist in fragmented landscapes.

     
    more » « less
  4. Abstract

    Urbanization is a persistent and widespread driver of global environmental change, potentially shaping evolutionary processes due to genetic drift and reduced gene flow in cities induced by habitat fragmentation and small population sizes. We tested this prediction for the eastern grey squirrel (Sciurus carolinensis), a common and conspicuous forest‐dwelling rodent, by obtaining 44K SNPs using reduced representation sequencing (ddRAD) for 403 individuals sampled across the species' native range in eastern North America. We observed moderate levels of genetic diversity, low levels of inbreeding, and only a modest signal of isolation‐by‐distance. Clustering and migration analyses show that estimated levels of migration and genetic connectivity were higher than expected across cities and forested areas, specifically within the eastern portion of the species' range dominated by urbanization, and genetic connectivity was less than expected within the western range where the landscape is fragmented by agriculture. Landscape genetic methods revealed greater gene flow among individual squirrels in forested regions, which likely provide abundant food and shelter for squirrels. Although gene flow appears to be higher in areas with more tree cover, only slight discontinuities in gene flow suggest eastern grey squirrels have maintained connected populations across urban areas in all but the most heavily fragmented agricultural landscapes. Our results suggest urbanization shapes biological evolution in wildlife species depending strongly on the composition and habitability of the landscape matrix surrounding urban areas.

     
    more » « less
  5. Abstract Questions

    Vascular epiphytes constitute a large proportion of tropical forest plant biodiversity, but are among the slowest plants to recolonize secondary forests. We asked whether tree planting for ecological restoration accelerates epiphyte community recovery. Does the spatial configuration of tree planting matter? What landscape contexts are most suitable for epiphyte restoration?

    Location

    Restored pastures in premontane Coto Brus County, Puntarenas, Costa Rica.

    Methods

    We surveyed vascular epiphyte species growing on the lower trunks of 1083 trees in 13 experimental restoration sites. Each site contained three 0.25‐ha treatment plots: natural regeneration, trees planted in patches or ‘islands’ and tree plantations. Sites spanned elevational (1100–1430 m) and deforestation (4–94% forest cover within a 100‐m radius around each site) gradients.

    Results

    Vascular epiphytes were twice as diverse in planted restoration plots (islands and plantations) as in natural regeneration; we observed this at the scale of individual host trees and within 0.25‐ha treatment plots. Contributing factors included that trees in planted restoration plots were larger, older, more abundant and composed of different species than trees in naturally regenerating plots. Epiphyte species richness increased with surrounding forest cover within 100–150 m of restoration plots. Epiphyte communities were also twice as diverse at higher (1330–1430 m) vs lower (1100–1290 m) elevation sites. Epiphyte groups responded differently to restoration treatments and landscape factors; ferns were responsible for higher species richness in planted restoration plots, whereas angiosperms drove elevation and forest cover effects.

    Conclusions

    Tree planting for ecological restoration enriched epiphyte communities compared to natural regeneration, likely because planted forests contained more, bigger and older trees. Tree island plantings were equally effective compared to larger and more expensive plantations. Restoration sites nearer to existing forests had richer epiphyte recolonization, likely because nearby forests provisioned restoration sites with angiosperm seeds. Collectively, results suggest that restoration practitioners can enrich epiphyte community development by planting trees in areas with higher surrounding forest cover, particularly at higher elevations.

     
    more » « less