skip to main content


Title: Experimental and Theoretical Evidence of a Pb⋅⋅⋅Pb Ditetrel Bond Without a σ‐Hole
Abstract

The crystal structure of a newly synthesized compound, [PbL(Ac)]2, (where L=2 (amino(pyrazin‐2‐yl) methylene) hydrazinecarbothioamide, Ac=acetate anion) exhibits a close contact between pairs of Pb atoms, suggesting a ditetrel bond, in addition to two Pb⋅⋅⋅O tetrel bonds, and two C−H⋅⋅⋅O H‐bonds. The presence of this ditetrel bond as an attractive component is confirmed by various quantum chemical methods. This novelty of this particular bond is its existence even in the absence of a σ‐hole on the Pb atom, which is typically considered a prerequisite for a bond of this type. From a wider perspective, a survey of the Cambridge Structural Database suggests this bond may be more common than was hitherto thought, with 44 examples of Pb⋅⋅⋅Pb contacts amongst a total number of 219 examples of T⋅⋅⋅T interactions in general (T=Si, Ge, Sn, Pb).

 
more » « less
Award ID(s):
1954310
NSF-PAR ID:
10445237
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPhysChem
Volume:
23
Issue:
14
ISSN:
1439-4235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reactions of the IrVhydride [MeBDIDipp]IrH4{BDI=(Dipp)NC(Me)CH(Me)CN(Dipp); Dipp=2,6‐iPr2C6H3} with E[N(SiMe3)2]2(E=Sn, Pb) afforded the unusual dimeric dimetallotetrylenes ([MeBDIDipp]IrH)2(μ2‐E)2in good yields. Moreover, ([MeBDIDipp]IrH)2(μ2‐Ge)2was formed in situ from thermal decomposition of [MeBDIDipp]Ir(H)2Ge[N(SiMe3)2]2. These reactions are accompanied by liberation of HN(SiMe3)2and H2through the apparent cleavage of an E−N(SiMe3)2bond by Ir−H. In a reversal of this process, ([MeBDIDipp]IrH)2(μ2‐E)2reacted with excess H2to regenerate [MeBDIDipp]IrH4. Varying the concentrations of reactants led to formation of the trimeric ([MeBDIDipp]IrH2)3(μ2‐E)3. The further scope of this synthetic route was investigated with group 15 amides, and ([MeBDIDipp]IrH)2(μ2‐Bi)2was prepared by the reaction of [MeBDIDipp]IrH4with Bi(NMe2)3or Bi(OtBu)3to afford the first example of a “naked” two‐coordinate Bi atom bound exclusively to transition metals. A viable mechanism that accounts for the formation of these products is proposed. Computational investigations of the Ir2E2(E=Sn, Pb) compounds characterized them as open‐shell singlets with confined nonbonding lone pairs at the E centers. In contrast, Ir2Bi2is characterized as having a closed‐shell singlet ground state.

     
    more » « less
  2. Abstract

    Despite its electron deficiency, boron can form multiple bonds with a variety of elements. However, multiple bonds between boron and main-group metal elements are relatively rare. Here we report the observation of boron-lead multiple bonds in PbB2Oand PbB3O2, which are produced and characterized in a cluster beam. PbB2Ois found to have an open-shell linear structure, in which the bond order of B☱Pb is 2.5, while the closed-shell [Pb≡B–B≡O]2–contains a B≡Pb triple bond. PbB3O2is shown to have a Y-shaped structure with a terminal B = Pb double bond coordinated by two boronyl ligands. Comparison between [Pb≡B–B≡O]2–/[Pb=B(B≡O)2]and the isoelectronic [Pb≡B–C≡O]/[Pb=B(C≡O)2]+carbonyl counterparts further reveals transition-metal-like behaviors for the central B atoms. Additional theoretical studies show that Ge and Sn can form similar boron species as Pb, suggesting the possibilities to synthesize new compounds containing multiple boron bonds with heavy group-14 elements.

     
    more » « less
  3. Abstract

    Nature is capable of storing solar energy in chemical bonds via photosynthesis through a series of C–C, C–O and C–N bond-forming reactions starting from CO2and light. Direct capture of solar energy for organic synthesis is a promising approach. Lead (Pb)-halide perovskite solar cells reach 24.2% power conversion efficiency, rendering perovskite a unique type material for solar energy capture. We argue that photophysical properties of perovskites already proved for photovoltaics, also should be of interest in photoredox organic synthesis. Because the key aspects of these two applications are both relying on charge separation and transfer. Here we demonstrated that perovskites nanocrystals are exceptional candidates as photocatalysts for fundamental organic reactions, for example C–C, C–N and C–O bond-formations. Stability of CsPbBr3in organic solvents and ease-of-tuning their bandedges garner perovskite a wider scope of organic substrate activations. Our low-cost, easy-to-process, highly-efficient, air-tolerant and bandedge-tunable perovskites may bring new breakthrough in organic chemistry.

     
    more » « less
  4. Abstract

    Molecular design ultimately furnishes improvements in performance over time, and this has been the case for Rh‐ and Ir‐based molecular catalysts currently used in transfer hydrogenation (TH) reactions for fine chemical synthesis. In this report, we describe a molecular pincer ligand Al catalyst for TH, (I2P2−)Al(THF)Cl (I2P=diiminopyridine; THF=tetrahydrofuran). The mechanism for TH is initiated by two successive Al‐ligand cooperative bond activations of the O−H bonds in two molecules of isopropanol (iPrOH) to afford six‐coordinate (H2I2P)Al(OiPr)2Cl. Stoichiometric chemical reactions and kinetic experiments suggest an ordered transition state, supported by polar solvents, for concerted hydride transfer fromiPrOto substrate. Metal‐ligand cooperative hydrogen bonding in a cyclic transition state is a likely support for the concerted hydride transfer event. The available data does not support involvement of an intermediate Al‐hydride in the TH. Proof‐of‐principle reactions including the conversion of isopropanol and benzophenone to acetone and diphenylmethanol with 90 % conversion in 1 h are described. The analogous hydride compound, (I2P2−)Al(THF)H, also cleaves the O−H bond iniPrOH to afford (HI2P)Al(OiPr)H and (HI2P)Al(OiPr)2, but no activity for catalytic TH was observed.

     
    more » « less
  5. The molecular structure of the title compound, C 11 H 15 NO 2 S, features a sulfonamide group with S=O bond lengths of 1.4357 (16) and 1.4349 (16) Å, an S—N bond length of 1.625 (2) Å, and an S—C bond length of 1.770 (2) Å. When viewing the molecule down the S—N bond, both N—C bonds of the pyrrolidine ring are oriented gauche to the S—C bond with torsion angles of −65.6 (2)° and 76.2 (2)°. The crystal structure features both intra- and intermolecular C—H...O hydrogen bonds, as well as intermolecular C—H...π and π–π interactions, leading to the formation of sheets parallel to the ac plane. 
    more » « less