skip to main content

Title: Host–enemy interactions provide limited biotic resistance for a range‐expanding species via reduced apparent competition
Abstract Aim

As species' ranges shift poleward in response to anthropogenic change, they may lose antagonistic interactions if they move into less diverse communities, fail to interact with novel populations or species effectively, or if ancestral interacting populations or species fail to shift synchronously. We leveraged a poleward range expansion in a tractable insect host–enemy community to uncover mechanisms by which altered antagonistic interactions between native and recipient communities contributed to ‘high niche opportunities’ (limited biotic resistance) for a range‐expanding insect.


North America, Pacific Northwest.


We created quantitative insect host–enemy interaction networks by sampling oak gall wasps on 400 trees of a dominant oak species in the native and expanded range of a range‐expanding gall wasp species. We compared host–enemy network structure between regions. We measured traits (phenology, morphology) of galls and interacting parasitoids, predicting greater trait divergence in the expanded range. We measured function relating to host control and explored if altered interactions and traits contributed to reduced function, or biotic resistance.


Interaction networks had fewer species in the expanded range and lower complementarity of parasitoid assemblages among host species. While networks were more generalized, interactions with the range‐expanding species were more specialized in the expanded range. Specialist enemies effectively tracked the range‐expanding host, and there was reduced apparent competition with co‐occurring hosts by shared generalist enemies. Phenological divergence of enemy assemblages interacting with the range‐expanding and co‐occurring hosts was greater in the expanded range, potentially contributing to weak apparent competition. Biotic resistance was lower in the expanded range, where fewer parasitoids emerged from galls of the range‐expanding host.

Main Conclusions

Changes in interactions with generalist enemies created high niche opportunities, and limited biotic resistance, suggesting weak apparent competition may be a mechanism of enemy release for range‐expanding insects embedded within generalist enemy networks.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Diversity and Distributions
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The morphology of insect-induced galls contributes to defences of the gall-inducing insect species against its natural enemies. In terms of gall chemistry, the only defensive compounds thus far identified in galls are tannins that accumulate in many galls, preventing damage by herbivores. Intrigued by the fruit-like appearance of the translucent oak gall (TOG; Amphibolips nubilipennis , Cynipidae, Hymenoptera) induced on red oak ( Quercus rubra ), we hypothesized that its chemical composition may deviate from other galls. We found that the pH of the gall is between 2 and 3, making it among the lowest pH levels found in plant tissues. We examined the organic acid content of TOG and compared it to fruits and other galls using high-performance liquid chromatography and gas chromatography–mass spectrometry. Malic acid, an acid with particularly high abundance in apples, represents 66% of the organic acid detected in TOGs. The concentration of malic acid was two times higher than in other galls and in apples. Gall histology showed that the acid-containing cells were enlarged and vacuolized just like fruits mesocarp cells. Accumulation of organic acid in gall tissues is convergent with fruit morphology and may constitute a new defensive strategy against predators and parasitoids. 
    more » « less
  2. The identities of most arthropod associates of cynipid-induced oak galls in the western Palearctic are generally known. However, a comprehensive accounting of associates has been performed for only a small number of the galls induced by the estimated 700 species of cynipid gall wasps in the Nearctic. This gap in knowledge stymies many potential studies of diversity, coevolution, and community ecology, for which oak gall systems are otherwise ideal models. We report rearing records of insects and other arthropods from more than 527,306 individual galls representing 201 different oak gall types collected from 32 oak tree species in North America. Of the 201 gall types collected, 155 produced one or more arthropods. A total of 151,075 arthropods were found in association with these 155 gall types, and of these 61,044 (40.4%) were gall wasps while 90,031 (59.6%) were other arthropods. We identified all arthropods to superfamily, family, or, where possible, to genus. We provide raw numbers and summaries of collections, alongside notes on natural history, ecology, and previously published associations for each taxon. For eight common gall-associated genera (Synergus, Ceroptres, Euceroptres, Ormyrus, Torymus, Eurytoma, Sycophila, and Euderus), we also connect rearing records to gall wasp phylogeny, geography, and ecology - including host tree and gall location (host organ), and their co-occurrence with other insect genera. Though the diversity of gall wasps and the large size of these communities is such that many Nearctic oak gall-associated insects still remain undescribed, this large collection and identification effort should facilitate the testing of new and varied ecological and evolutionary hypotheses in Nearctic oak galls. 
    more » « less
  3. Mikó, István (Ed.)
    Abstract Several recent reappraisals of supposed generalist parasite species have revealed hidden complexes of species, each with considerably narrower host ranges. Parasitic wasps that attack gall-forming insects on plants have life history strategies that are thought to promote specialization, and though many species are indeed highly specialized, others have been described as generalist parasites. Ormyrus labotus Walker (Hymenoptera: Ormyridae) is one such apparent generalist, with rearing records spanning more than 65 host galls associated with a diverse set of oak tree species and plant tissues. We pair a molecular approach with morphology, host ecology, and phenological data from across a wide geographic sample to test the hypothesis that this supposed generalist is actually a complex of several more specialized species. We find 16–18 putative species within the morphological species O. labotus, each reared from only 1–6 host gall types, though we identify no single unifying axis of specialization. We also find cryptic habitat specialists within two other named Ormyrus species. Our study suggests that caution should be applied when considering host ranges of parasitic insects described solely by morphological traits, particularly given their importance as biocontrol organisms and their role in biodiversity and evolutionary studies. 
    more » « less
  4. null (Ed.)
    Over the past five decades, many studies have examined the Janzen-Connell hypothesis, which posits that host-specific natural enemies, such as insect herbivores and fungal pathogens, promote plant species coexistence by providing a recruitment advantage to rare plant species. Recently, researchers have been exploring new and exciting angles on plant-enemy interactions that have yielded novel insights into this long-standing hypothesis. Here, we highlight some empirical advances in our understanding of plant-enemy interactions in tropical forests, including improved understanding of variation in plant species’ susceptibility to enemy effects, as well as insect and pathogen host ranges. We then review recent advances in related ecological theory. These theoretical studies have confirmed that specialist natural enemies can promote tree diversity. However, they have also shown that the impact of natural enemies may be weakened, or that natural enemies could even cause species exclusion, depending on enemy host range, the spatial extent of enemy effects, and variation among plant species in seed dispersal or enemy susceptibility. Finally, we end by discussing how human impacts on tropical forests, such as fragmentation, hunting, and climate change, may alter the plant-enemy interactions that contribute to tropical forest diversity. 
    more » « less
  5. Abstract

    Many insect species have acquired the ability to redirect plant development to form unique organs called galls, which provide these insects with unique, enhanced food and protection from enemies and the elements. Many galls resemble flowers or fruits, suggesting that elements of reproductive development may be involved. We tested this hypothesis using RNA sequencing to quantify the transcriptional responses of wild grapevine (Vitis riparia) leaves to a galling parasite, phylloxera (Daktulosphaira vitifoliae). If development of reproductive structures is part of gall formation, we expected to find significantly elevated expression of genes involved in flower and/or fruit development in developing galls as opposed to ungalled leaves. We found that reproductive gene ontology categories were significantly enriched in developing galls, and that expression of many candidate genes involved in floral development were significantly increased, particularly in later gall stages. The patterns of gene expression found in galls suggest that phylloxera exploits vascular cambium to provide meristematic tissue and redirects leaf development towards formation of carpels. The phylloxera leaf gall appears to be phenotypically and transcriptionally similar to the carpel, due to the parasite hijacking underlying genetic machinery in the host plant.

    more » « less