Abstract AimAs species' ranges shift poleward in response to anthropogenic change, they may lose antagonistic interactions if they move into less diverse communities, fail to interact with novel populations or species effectively, or if ancestral interacting populations or species fail to shift synchronously. We leveraged a poleward range expansion in a tractable insect host–enemy community to uncover mechanisms by which altered antagonistic interactions between native and recipient communities contributed to ‘high niche opportunities’ (limited biotic resistance) for a range‐expanding insect. LocationNorth America, Pacific Northwest. MethodsWe created quantitative insect host–enemy interaction networks by sampling oak gall wasps on 400 trees of a dominant oak species in the native and expanded range of a range‐expanding gall wasp species. We compared host–enemy network structure between regions. We measured traits (phenology, morphology) of galls and interacting parasitoids, predicting greater trait divergence in the expanded range. We measured function relating to host control and explored if altered interactions and traits contributed to reduced function, or biotic resistance. ResultsInteraction networks had fewer species in the expanded range and lower complementarity of parasitoid assemblages among host species. While networks were more generalized, interactions with the range‐expanding species were more specialized in the expanded range. Specialist enemies effectively tracked the range‐expanding host, and there was reduced apparent competition with co‐occurring hosts by shared generalist enemies. Phenological divergence of enemy assemblages interacting with the range‐expanding and co‐occurring hosts was greater in the expanded range, potentially contributing to weak apparent competition. Biotic resistance was lower in the expanded range, where fewer parasitoids emerged from galls of the range‐expanding host. Main ConclusionsChanges in interactions with generalist enemies created high niche opportunities, and limited biotic resistance, suggesting weak apparent competition may be a mechanism of enemy release for range‐expanding insects embedded within generalist enemy networks.
more »
« less
This content will become publicly available on December 1, 2025
External insect gall morphology influences the functional guilds of natural enemy communities
The evolution of diverse and novel morphological traits is poorly understood, especially how symbiotic interactions can drive these adaptations. The extreme diversity of external traits in insect-induced galls is currently explained by the Enemy Hypothesis, in which these traits have selective advantage in deterring parasitism. While previous tests of this hypothesis used only taxonomic identity, we argue that ecologically functional traits of enemies (i.e. mode of parasitism, larval development strategy) are a crucial addition. Here, we characterize parasitoid guild composition across four disparate gall systems and find consistent patterns of association between enemy guild and gall morphology. Specifically, galls with a longer average larva-to-surface distance host a significantly higher proportion of enemies with a distinct combination of functional traits (i.e. ectoparasitic, idiobiont, elongate ovipositor). Our results support the Enemy Hypothesis and highlight the importance of species ecology in examining insect communities and the evolution of novel defensive characters.
more »
« less
- Award ID(s):
- 2021744
- PAR ID:
- 10609088
- Publisher / Repository:
- Royal Society
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 291
- Issue:
- 2036
- ISSN:
- 1471-2954
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The morphology of insect-induced galls contributes to defences of the gall-inducing insect species against its natural enemies. In terms of gall chemistry, the only defensive compounds thus far identified in galls are tannins that accumulate in many galls, preventing damage by herbivores. Intrigued by the fruit-like appearance of the translucent oak gall (TOG; Amphibolips nubilipennis , Cynipidae, Hymenoptera) induced on red oak ( Quercus rubra ), we hypothesized that its chemical composition may deviate from other galls. We found that the pH of the gall is between 2 and 3, making it among the lowest pH levels found in plant tissues. We examined the organic acid content of TOG and compared it to fruits and other galls using high-performance liquid chromatography and gas chromatography–mass spectrometry. Malic acid, an acid with particularly high abundance in apples, represents 66% of the organic acid detected in TOGs. The concentration of malic acid was two times higher than in other galls and in apples. Gall histology showed that the acid-containing cells were enlarged and vacuolized just like fruits mesocarp cells. Accumulation of organic acid in gall tissues is convergent with fruit morphology and may constitute a new defensive strategy against predators and parasitoids.more » « less
-
null (Ed.)Over the past five decades, many studies have examined the Janzen-Connell hypothesis, which posits that host-specific natural enemies, such as insect herbivores and fungal pathogens, promote plant species coexistence by providing a recruitment advantage to rare plant species. Recently, researchers have been exploring new and exciting angles on plant-enemy interactions that have yielded novel insights into this long-standing hypothesis. Here, we highlight some empirical advances in our understanding of plant-enemy interactions in tropical forests, including improved understanding of variation in plant species’ susceptibility to enemy effects, as well as insect and pathogen host ranges. We then review recent advances in related ecological theory. These theoretical studies have confirmed that specialist natural enemies can promote tree diversity. However, they have also shown that the impact of natural enemies may be weakened, or that natural enemies could even cause species exclusion, depending on enemy host range, the spatial extent of enemy effects, and variation among plant species in seed dispersal or enemy susceptibility. Finally, we end by discussing how human impacts on tropical forests, such as fragmentation, hunting, and climate change, may alter the plant-enemy interactions that contribute to tropical forest diversity.more » « less
-
Taylor, Scott; Zelditch, Miriam (Ed.)Abstract Host shifts to new plant species can drive speciation for plant-feeding insects, but how commonly do host shifts also drive diversification for the parasites of those same insects? Oak gall wasps induce galls on oak trees and shifts to novel tree hosts and new tree organs have been implicated as drivers of oak gall wasp speciation. Gall wasps are themselves attacked by many insect parasites, which must find their hosts on the correct tree species and organ, but also must navigate the morphologically variable galls with which they interact. Thus, we ask whether host shifts to new trees, organs, or gall morphologies correlate with gall parasite diversification. We delimit species and infer phylogenies for two genera of gall kleptoparasites, Synergus and Ceroptres, reared from a variety of North American oak galls. We find that most species were reared from galls induced by just one gall wasp species, and no parasite species was reared from galls of more than four species. Most kleptoparasite divergence events correlate with shifts to non-ancestral galls. These shifts often involved changes in tree habitat, gall location, and gall morphology. Host shifts are thus implicated in driving diversification for both oak gall wasps and their kleptoparasitic associates.more » « less
-
Abstract The enemy release hypothesis (ERH) of plant invasion asserts that natural enemies limit populations of invasive plants more strongly in native ranges than in non‐native ranges. Despite considerable empirical attention, few studies have directly tested this idea, especially with respect to generalist herbivores. This knowledge gap is important because escaping the effects of generalists is a critical aspect of the ERH that may help explain successful plant invasions. Here, we used consumer exclosures and seed addition experiments to contrast the effects of granivorous rodents (an important guild of generalists) on the establishment of cheatgrass (Bromus tectorum) in western Asia, where cheatgrass is native, versus the Great Basin Desert, USA, where cheatgrass is exotic and highly invasive. Consistent with the ERH, rodent foraging reduced cheatgrass establishment by nearly 60% in western Asia but had no effect in the Great Basin. This main result corresponded with a region‐specific foraging pattern: rodents in the Great Basin but not western Asia generally avoided seeds from cheatgrass relative to seeds from native competitors. Our results suggest that enemy release from the effects of an important guild of generalists may contribute to the explosive success of cheatgrass in the Great Basin. These findings corroborate classic theory on enemy release and expand our understanding of how generalists can influence the trajectory of exotic plant invasions.more » « less
An official website of the United States government
