Soft, elastically deformable composites with liquid metal (LM) droplets can enable new generations of soft electronics, robotics, and reconfigurable structures. However, techniques to control local composite microstructure, which ultimately governs material properties and performance, is lacking. Here a direct ink writing technique is developed to program the LM microstructure (i.e., shape, orientation, and connectivity) on demand throughout elastomer composites. In contrast to inks with rigid particles that have fixed shape and size, it is shown that emulsion inks with LM fillers enable in situ control of microstructure. This enables filaments, films, and 3D structures with unique LM microstructures that are generated on demand and locked in during printing. This includes smooth and discrete transitions from spherical to needle‐like droplets, curvilinear microstructures, geometrically complex embedded inclusion patterns, and connected LM networks. The printed materials are soft (modulus < 200 kPa), highly deformable (>600 % strain), and can be made locally insulating or electrically conductive using a single ink by controlling the process conditions. These capabilities are demonstrated by embedding elongated LM droplets in a soft heat sink, which rapidly dissipates heat from high‐power LEDs. These programmable microstructures can enable new composite paradigms for emerging technologies that demand mechanical compliance with multifunctional response.
more » « less- NSF-PAR ID:
- 10445355
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 34
- Issue:
- 20
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Material extrusion (MEX) of soft, multifunctional composites consisting of liquid metal (LM) droplets can enable highly tailored properties for a range of applications from soft robotics to stretchable electronics. However, an understanding of how LM ink rheology and print process parameters can reconfigure LM droplet shape during MEX processing for in-situ control of properties and function is currently limited. Herein, the material (ink viscosity, and LM droplet size) and process (nozzle velocity, height from print bed, and extrusion rate) parameters are determined which control LM microstructure during MEX of these composites. The interplay and interdependence of these parameters is evaluated and nearly spherical LM droplets are transformed into highly elongated ellipsoidal shapes with an average aspect ratio of 12.4 by systematically tuning each individual parameter. Material and process relationships are established for the LM ink which show that an ink viscosity threshold should be fulfilled to program the LM microstructure from spherical to an ellipsoidal shape during MEX. Additionally, the thin oxide layer on the LM droplets is found to play a unique and critical role in the reconfiguration and retention of droplet shape. Finally, two quantitative design maps based on material and process parameters are presented to guide MEX additive manufacturing strategies for tuning liquid droplet architecture in LM-polymer inks. The insights gained from this study enable informed design of materials and manufacturing to control microstructure of emerging multifunctional soft composites.more » « less
-
Abstract Liquid metal (LM) elastomer composites offer promising potential in soft robotics, wearable electronics, and human‐machine interfaces. Direct ink write (DIW) 3D printing offers a versatile manufacturing technique capable of precise control over LM microstructures, yet challenges such as interfilament void formation in multilayer structures impact material performance. Here, a DIW strategy is introduced to control both LM microstructure and material architecture. Investigating three key process parameters–nozzle height, extrusion rate, and nondimensionalized nozzle velocity–it is found that nozzle height and velocity predominantly influence filament geometry. The nozzle height primarily dictates the aspect ratio of the filament and the formation of voids. A threshold print height based on filament geometry is identified; below the height, significant surface roughness occurs, and above the ink fractures, which facilitates the creation of porous structures with tunable stiffness and programmable LM microstructure. These porous architectures exhibit reduced density and enhanced thermal conductivity compared to cast samples. When used as a dielectric in a soft capacitive sensor, they display high sensitivity (gauge factor = 9.0), as permittivity increases with compressive strain. These results demonstrate the capability to simultaneously manipulate LM microstructure and geometric architecture in LM elastomer composites through precise control of print parameters, while maintaining geometric fidelity in the printed design.
-
Abstract Lightweight and elastically deformable soft materials that are thermally conductive are critical for emerging applications in wearable computing, soft robotics, and thermoregulatory garments. To overcome the fundamental heat transport limitations in soft materials, room temperature liquid metal (LM) has been dispersed in elastomer that results in soft and deformable materials with unprecedented thermal conductivity. However, the high density of LMs (>6 g cm−3) and the typically high loading (⩾85 wt%) required to achieve the desired properties contribute to the high density of these elastomer composites, which can be problematic for large‐area, weight‐sensitive applications. Here, the relationship between the properties of the LM filler and elastomer composite is systematically studied. Experiments reveal that a multiphase LM inclusion with a low‐density phase can achieve independent control of the density and thermal conductivity of the elastomer composite. Quantitative design maps of composite density and thermal conductivity are constructed to rationally guide the selection of filler properties and material composition. This new multiphase material architecture provides a method to fine‐tune material composition to independently control material and functional properties of soft materials for large‐area and weight‐sensitive applications.
-
Abstract Liquid metal (LM) composites, which consist of LM droplets dispersed in highly deformable elastomers, have recently gained interest as a multifunctional material for soft robotics and electronics. The incorporation of LM into elastic solids allows for unique combinations of material properties such as high stretchability with thermal and electrical conductivity comparable to metals. However, it is currently a challenge to incorporate LM composites into integrated systems consisting of diverse materials and components due to a lack of adhesion control. Here, a chemical anchoring methodology to increase adhesion of LM composites to diverse substrates is presented. The fracture energy increases up to 100× relative to untreated surfaces, with values reaching up to 7800 J m−2. Furthermore, the fracture energy, tensile modulus, and thermal conductivity can be tuned together by controlling the microstructure of LM composites. Finally, the bonding technique is used to integrate LM composites with functional electronic components without encapsulation or clamping, allowing for extreme deformations while maintaining exceptional thermal and electrical conductivity. These findings can accelerate the adoption of LM composites into complex soft robotic and electronic systems where strong, reliable bonding between diverse materials and components is required.
-
Abstract Elastomers embedded with droplets of liquid metal (LM) alloy represent an emerging class of soft multifunctional composites that have potentially transformative impact in wearable electronics, biocompatible machines, and soft robotics. However, for these applications it is crucial for LM alloys to remain liquid during the entire service temperature range in order to maintain high mechanical compliance throughout the duration of operation. Here, LM‐based functional composites that do not freeze and remain soft and stretchable at extremely low temperatures are introduced. It is shown that the confinement of LM droplets to micro‐/nanometer length scales significantly suppresses their freezing temperature (down to −84.1 from −5.9 °C) and melting point (down to −25.6 from +17.8 °C) independent of the choice of matrix material and processing conditions. Such a supercooling effect allows the LM inclusions to preserve their fluidic nature at low temperatures and stretch with the surrounding polymer matrix without introducing significant mechanical resistance. These results indicate that LM composites with highly stabilized droplets can operate over a wide temperature range and open up new possibilities for these emerging materials, which are demonstrated with self‐powered wearable thermoelectric devices for bio‐sensing and personal health monitoring at low temperatures.