skip to main content


Title: Antifouling Surface Coatings from Self‐Assembled Zwitterionic Aramid Amphiphile Nanoribbons
Abstract

Zwitterionic surfaces are increasingly explored as antifouling coatings due to their propensity to resist protein, bacterial, and cell adhesion and are typically applied as polymeric systems. Here, the self‐assembly of strongly interacting small molecule amphiphiles is reported to produce nanoribbons for antifouling applications. Synthesized amphiphiles spontaneously form micrometers‐long nanoribbons with nanometer‐scale cross‐sections and intrinsically display a dense coating of zwitterionic moieties on their surfaces. Substrates coated with nanoribbons demonstrate concentration‐dependent thicknesses and near superhydrophilicity. These surface coatings are then probed for antifouling properties and substantial reductions are demonstrated in protein adsorption, bacterial biofilm formation, and cell adhesion relative to uncoated controls. Harnessing cohesive small molecule self‐assembling nanomaterials for surface coatings offers a facile route to effective antifouling surfaces.

 
more » « less
NSF-PAR ID:
10445481
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
9
Issue:
22
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Due to the emergence of wide-spread infectious diseases, there is a heightened need for antimicrobial and/or antifouling coatings that can be used to prevent infection and transmission in a variety of applications, ranging from healthcare devices to public facilities. While antimicrobial coatings kill pathogenic bacteria upon contact with the surface, the antimicrobial function alone often lacks long-term effectiveness due to the accumulation of dead cells and their debris on the surface, thus reducing the performance of the coating over time. Therefore, it is desirable to develop coatings with the dual functions of antimicrobial efficacy and fouling resistance, in which antifouling coatings provide the added benefit of preventing the adhesion of dead cells and debris. Leveraging the outstanding antifouling properties of zwitterionic coatings, we synthesized copolymers with this antimicrobial-antifouling dual function by immobilizing lysozyme, a common antimicrobial enzyme, to the surface of a pyridinium-based zwitterionic copolymer. Specifically, poly(4-vinylpyridine- co -pentaflurophenyl methacrylate- co -divinyl benzene) [P(4VP-PFPMA-DVB)] thin films were synthesized by an all-dry vapor deposition technique, initiated Chemical Vapor Deposition, and derivatized using 1,3-propane sultone to obtain sulfobetaine moieties. Lysozyme, known to hydrolyze polysaccharides in the cell wall of Gram-positive bacteria, was immobilized by forming amide bonds with the copolymer coating via nucleophilic substitution of the pentafluorophenyl group. The antifouling and antibacterial performance of the novel lysozyme-zwitterionic coating was tested against Gram-positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa . A reduction in surface adhesion of 87% was achieved for P. aeruginosa , and of 75% for B. subtilis , when compared to a common poly(vinyl chloride) surface. The lysozyme-zwitterionic coating also deactivated 67% of surface-attached Gram-positive bacteria, B. subtilis . This novel dual-function material can produce anti -infection surfaces for medical devices and surgical tools, personal care products, and surfaces in public facilities. 
    more » « less
  2. The ubiquitous nature of microorganisms, especially of biofilm-forming bacteria, makes biofouling a prevalent challenge in many settings, including medical and industrial environments immersed in liquid and subjected to shear forces. Recent studies have shown that zwitterionic groups are effective in suppressing bacteria and protein adhesion as well as biofilm growth. However, the effect of zwitterionic groups on the removal of surface-bound bacteria has not been extensively studied. Here we present a microfluidic approach to evaluate the effectiveness in facilitating bacteria detachment by shear of an antifouling surface treatment using (3-(dimethyl;(3-trimethoxysilyl)propyl)ammonia propane-1-sulfonate), a sulfobetaine silane (SBS). Control studies show that SBS-functionalized surfaces greatly increase protein (bovine serum albumin) removal upon rinsing. On the same surfaces, enhanced bacteria ( Pseudomonas aeruginosa ) removal is observed under shear. To quantify this enhancement a microfluidic shear device is employed to investigate how SBS-functionalized surfaces promote bacteria detachment under shear. By using a microfluidic channel with five shear zones, we compare the removal of bacteria from zwitterionic and glass surfaces under different shear rates. At times of 15 min, 30 min, and 60 min, bacteria adhesion on SBS-functionalized surfaces is reduced relative to the control surface (glass) under quiescent conditions. However, surface-associated bacteria on the SBS-functionalized glass and control show similar percentages of live cells, suggesting minimal intrinsic biocidal effect from the SBS-functionalized surface. Notably, when exposed to shear rates ranging from 10 4 to 10 5 s −1 , significantly fewer bacteria remain on the SBS-functionalized surfaces. These results demonstrate the potential of zwitterionic sulfobetaine as effective antifouling coatings that facilitate the removal of bacteria under shear. 
    more » « less
  3. Abstract

    This work is concerned with investigating the effect of substrate hydrophobicity and zeta potential on the dynamics and kinetics of the initial stages of bacterial adhesion. For this purpose, bacterial pathogensStaphylococcus aureusandEscherichia coliO157:H7 were inoculated on the substrates coated with thin thiol layers (i.e., 1-octanethiol, 1-decanethiol, 1-octadecanethiol, 16-mercaptohexadecanoic acid, and 2-aminoethanethiol hydrochloride) with varying hydrophobicity and surface potential. The time-resolved adhesion data revealed a transformation from an exponential dependence to a square root dependence on time upon changing the substrate from hydrophobic or hydrophilic with a negative zeta potential value to hydrophilic with a negative zeta potential for both pathogens. The dewetting of extracellular polymeric substances (EPS) produced byE.coliO157:H7 was more noticeable on hydrophobic substrates, compared to that ofS.aureus, which is attributed to the more amphiphilic nature of staphylococcal EPS. The interplay between the timescale of EPS dewetting and the inverse of the adhesion rate constant modulated the distribution ofE.coliO157:H7 within microcolonies and the resultant microcolonial morphology on hydrophobic substrates. Observed trends in the formation of bacterial monolayers rather than multilayers and microcolonies rather than isolated and evenly spaced bacterial cells could be explained by a colloidal model considering van der Waals and electrostatic double-layer interactions only after introducing the contribution of elastic energy due to adhesion-induced deformations at intercellular and substrate-cell interfaces. The gained knowledge is significant in the context of identifying surfaces with greater risk of bacterial contamination and guiding the development of novel surfaces and coatings with superior bacterial antifouling characteristics.

     
    more » « less
  4. null (Ed.)
    Because bacterial adhesion to surfaces is associated with infections and biofilm growth, it has been a longstanding goal to develop coatings that minimize biomolecular adsorption and eliminate bacteria adhesion. We demonstrate that, even on carefully-engineered non-bioadhesive coatings such as polyethylene glycol (PEG) layers that prevent biomolecule adsorption and cell adhesion, depletion interactions from non-adsorbing polymer in solution (such as 10 K PEG or 100 K PEO) can cause adhesion and retention of Escherichia coli cells, defeating the antifouling functionality of the coating. The cells are immobilized and remain viable on the timescale of the study, at least up to 45 minutes. When the polymer solution is replaced by buffer, cells rapidly escape from the surface, consistent with expectations for the reversibility of depletion attractions. The dissolved polymer additionally causes cells to aggregate in solution and aggregates rapidly dissociate to singlets upon tenfold dilution in buffer, also consistent with depletion. Hydrodynamic forces can substantially reduce the adhesion of aggregates on surfaces in conditions where single cells adhere via depletion. The findings reported here suggest that because bacteria thrive in polymer-rich environments both in vivo and in situ , depletion interactions may make it impossible to avoid bacterial retention on surfaces. 
    more » « less
  5. Protein-based materials provide an inherently biocompatible and sustainable platform for the generation of functional materials. Translating protein properties into protein films resistant to aqueous degradation is crucial for most applications such as tissue engineering and controlled drug delivery. Current methods to stabilize protein films use three main strategies: employing the relatively limited variety of naturally self-assembling proteins, using added cross-linkers or heat curing. While the cross-linking strategy generates functionally diverse structures, unreacted additives retained in cross-linked protein films can adversely affect their final behavior. Traditional heat curing results in hydrophobic surface and loss of protein inherent properties. We demonstrate here a scalable, additive-free, fluorous media assisted thermal treatment for the fabrication of stable, hydrophilic protein films. This approach is general in terms of protein building block, retaining much of their native structure and surface properties upon heating. We demonstrate the versatility of this strategy through fabrication of antifouling coatings on complex three-dimensional surfaces. The utility of these films as biomaterials is highlighted through the generation of highly biocompatible non-fouling surfaces and regulation of cellular adhesion through choice of protein precursor. 
    more » « less