This content will become publicly available on March 25, 2025
- Award ID(s):
- 2239881
- NSF-PAR ID:
- 10528795
- Publisher / Repository:
- AAAI
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 38
- Issue:
- 20
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 22547 to 22555
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Fairness metrics have become a useful tool to measure how fair or unfair a machine learning system may be for its stakeholders. In the context of recommender systems, previous research has explored how various stakeholders experience algorithmic fairness or unfairness, but it is also important to capture these experiences in the design of fairness metrics. Therefore, we conducted four focus groups with providers (those whose items, content, or profiles are being recommended) of two different domains: content creators and dating app users. We explored how our participants experience unfairness on their associated platforms, and worked with them to co-design fairness goals, definitions, and metrics that might capture these experiences. This work represents an important step towards designing fairness metrics with the stakeholders who will be impacted by their operationalizations. We analyze the efficacy and challenges of enacting these metrics in practice and explore how future work might benefit from this methodology.more » « less
-
Federated Learning (FL) is a technique that allows multiple parties to train a shared model collaboratively without disclosing their private data. It has become increasingly popular due to its distinct privacy advantages. However, FL models can suffer from biases against certain demographic groups (e.g., racial and gender groups) due to the heterogeneity of data and party selection. Researchers have proposed various strategies for characterizing the group fairness of FL algorithms to address this issue. However, the effectiveness of these strategies in the face of deliberate adversarial attacks has not been fully explored. Although existing studies have revealed various threats (e.g., model poisoning attacks) against FL systems caused by malicious participants, their primary aim is to decrease model accuracy, while the potential of leveraging poisonous model updates to exacerbate model unfairness remains unexplored. In this paper, we propose a new type of model poisoning attack, EAB-FL, with a focus on exacerbating group unfairness while maintaining a good level of model utility. Extensive experiments on three datasets demonstrate the effectiveness and efficiency of our attack, even with state-of-the-art fairness optimization algorithms and secure aggregation rules employed. We hope this work will help the community fully understand the attack surfaces of current FL systems and facilitate corresponding mitigation to improve their resilience.
-
Content spread inequity is a potential unfairness issue in online social networks, disparately impacting minority groups. In this paper, we view friendship suggestion, a common feature in social network platforms, as an opportunity to achieve an equitable spread of content. In particular, we propose to suggest a subset of potential edges (currently not existing in the network but likely to be accepted) that maximizes content spread while achieving fairness. Instead of re-engineering the existing systems, our proposal builds a fairness wrapper on top of the existing friendship suggestion components. We prove the problem is NP-hard and inapproximable in polynomial time unless P=NP. Therefore, allowing relaxation of the fairness constraint, we propose an algorithm based on LP-relaxation and randomized rounding with fixed approximation ratios on fairness and content spread. We provide multiple optimizations, further improving the performance of our algorithm in practice. Besides, we propose a scalable algorithm that dynamically adds subsets of nodes, chosen via iterative sampling, and solves smaller problems corresponding to these nodes. Besides theoretical analysis, we conduct comprehensive experiments on real and synthetic data sets. Across different settings, our algorithms found solutions with near-zero unfairness while significantly increasing the content spread. Our scalable algorithm could process a graph with half a million nodes on a single machine, reducing the unfairness to around 0.0004 while lifting content spread by 43%.more » « less
-
As one of the most pervasive applications of machine learning, recommender systems are playing an important role on assisting human decision making. The satisfaction of users and the interests of platforms are closely related to the quality of the generated recommendation results. However, as a highly data-driven system, recommender system could be affected by data or algorithmic bias and thus generate unfair results, which could weaken the reliance of the systems. As a result, it is crucial to address the potential unfairness problems in recommendation settings. Recently, there has been growing attention on fairness considerations in recommender systems with more and more literature on approaches to promote fairness in recommendation. However, the studies are rather fragmented and lack a systematic organization, thus making it difficult to penetrate for new researchers to the domain. This motivates us to provide a systematic survey of existing works on fairness in recommendation. This survey focuses on the foundations for fairness in recommendation literature. It first presents a brief introduction about fairness in basic machine learning tasks such as classification and ranking in order to provide a general overview of fairness research, as well as introduce the more complex situations and challenges that need to be considered when studying fairness in recommender systems. After that, the survey will introduce fairness in recommendation with a focus on the taxonomies of current fairness definitions, the typical techniques for improving fairness, as well as the datasets for fairness studies in recommendation. The survey also talks about the challenges and opportunities in fairness research with the hope of promoting the fair recommendation research area and beyond.more » « less
-
null (Ed.)Though recommender systems are defined by personalization, recent work has shown the importance of additional, beyond-accuracy objectives, such as fairness. Because users often expect their recommendations to be purely personalized, these new algorithmic objectives must be communicated transparently in a fairness-aware recommender system. While explanation has a long history in recommender systems research, there has been little work that attempts to explain systems that use a fairness objective. Even though the previous work in other branches of AI has explored the use of explanations as a tool to increase fairness, this work has not been focused on recommendation. Here, we consider user perspectives of fairness-aware recommender systems and techniques for enhancing their transparency. We describe the results of an exploratory interview study that investigates user perceptions of fairness, recommender systems, and fairness-aware objectives. We propose three features – informed by the needs of our participants – that could improve user understanding of and trust in fairness-aware recommender systems.more » « less