skip to main content


Title: Vaccines and more: The response of Dark Web marketplaces to the ongoing COVID-19 pandemic
Early analyses revealed that dark web marketplaces (DWMs) started offering COVID-19 related products (e.g., masks and COVID-19 tests) as soon as the COVID-19 pandemic started, when these goods were in shortage in the traditional economy. Here, we broaden the scope and depth of previous investigations by considering how DWMs responded to an ongoing pandemic after the initial shock. Our dataset contains listings from 194 DWMs collected until July 2021. We start by focusing on vaccines. We find 248 listings offering approved vaccines, like Pfizer/BioNTech and AstraZeneca, as well as vendors offering fabricated proofs of vaccination and COVID-19 passports. Then, we consider COVID-19 related products. We show that, as the regular economy has become able to satisfy the demand of these goods, DWMs have decreased their offer. Next, we analyse the profile of vendors of COVID-19 related products and vaccines. We find that most of them are specialized in a single type of listings and are willing to ship worldwide. Finally, we consider a broader set of listings mentioning COVID-19, in order to assess the general impact of the pandemic on the broader activity of DWMs. Among 10,330 such listings, we show that recreational drugs are the most affected among traditional DWMs product, with COVID-19 mentions steadily increasing since March 2020. We anticipate that our results will be of interest to researchers, practitioners, and law enforcement agencies focused on the study and safeguard of public health.  more » « less
Award ID(s):
2039693
NSF-PAR ID:
10445602
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Botta, Federico
Date Published:
Journal Name:
PLOS ONE
Volume:
17
Issue:
11
ISSN:
1932-6203
Page Range / eLocation ID:
e0275288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The COVID-19 pandemic has reshaped the demand for goods and services worldwide. The combination of a public health emergency, economic distress, and misinformation-driven panic have pushed customers and vendors towards the shadow economy. In particular, dark web marketplaces (DWMs), commercial websites accessible via free software, have gained significant popularity. Here, we analyse 851,199 listings extracted from 30 DWMs between January 1, 2020 and November 16, 2020. We identify 788 listings directly related to COVID-19 products and monitor the temporal evolution of product categories including Personal Protective Equipment (PPE), medicines (e.g., hydroxyclorochine), and medical frauds . Finally, we compare trends in their temporal evolution with variations in public attention, as measured by Twitter posts and Wikipedia page visits. We reveal how the online shadow economy has evolved during the COVID-19 pandemic and highlight the importance of a continuous monitoring of DWMs, especially now that real vaccines are available and in short supply. We anticipate our analysis will be of interest both to researchers and public agencies focused on the protection of public health. 
    more » « less
  2. Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the causal agent for COVID-19, is a communicable disease spread through close contact. It is known to disproportionately impact certain communities due to both biological susceptibility and inequitable exposure. In this study, we investigate the most important health, social, and environmental factors impacting the early phases (before July, 2020) of per capita COVID-19 transmission and per capita all-cause mortality in US counties. We aggregate county-level physical and mental health, environmental pollution, access to health care, demographic characteristics, vulnerable population scores, and other epidemiological data to create a large feature set to analyze per capita COVID-19 outcomes. Because of the high-dimensionality, multicollinearity, and unknown interactions of the data, we use ensemble machine learning and marginal prediction methods to identify the most salient factors associated with several COVID-19 outbreak measure. Our variable importance results show that measures of ethnicity, public transportation and preventable diseases are the strongest predictors for both per capita COVID-19 incidence and mortality. Specifically, the CDC measures for minority populations, CDC measures for limited English, and proportion of Black- and/or African-American individuals in a county were the most important features for per capita COVID-19 cases within a month after the pandemic started in a county and also at the latest date examined. For per capita all-cause mortality at day 100 and total to date, we find that public transportation use and proportion of Black- and/or African-American individuals in a county are the strongest predictors. The methods predict that, keeping all other factors fixed, a 10% increase in public transportation use, all other factors remaining fixed at the observed values, is associated with increases mortality at day 100 of 2012 individuals (95% CI [1972, 2356]) and likewise a 10% increase in the proportion of Black- and/or African-American individuals in a county is associated with increases total deaths at end of study of 2067 (95% CI [1189, 2654]). Using data until the end of study, the same metric suggests ethnicity has double the association as the next most important factors, which are location, disease prevalence, and transit factors. Our findings shed light on societal patterns that have been reported and experienced in the U.S. by using robust methods to understand the features most responsible for transmission and sectors of society most vulnerable to infection and mortality. In particular, our results provide evidence of the disproportionate impact of the COVID-19 pandemic on minority populations. Our results suggest that mitigation measures, including how vaccines are distributed, could have the greatest impact if they are given with priority to the highest risk communities. 
    more » « less
  3. The underserved population could be at risk during the times of crisis, unless there is strong involvement from government agencies such as local and state Health departments and federal Center for Disease Control (CDC). The COVID-19 pandemic was a crisis of different proportion, creating a different type of burden on government agencies. Vulnerable communities including the elderly populations and communities of color have been especially hard hit by this pandemic. This forced these agencies to change their strategies and supply chains to support all populations receiving therapeutics. The National Science Foundation [National Science Foundation (NSF) Award Abstract # 2028612] funded RAID Labs to help federal agencies with strategies. This paper is based on a NSF funded grant to work on investigating supply chain strategies that would minimize the impact on underserved populations during pandemic. This NSF funded study identified the phenomena of last mile importance. The last mile transportation concept was critical in saving lives during the pandemic for underserved populations. The supply chain model then maximizes social goods by sending drugs or vaccines to the communities that need it the most regardless of ability to pay. The outcome of this study helped us prioritize the communities that need the vaccines the most. This informs our supply chain model to shift resources to these areas showing the value in real time prioritization of the COVID-19 supply chain. This paper provides information can be used in our healthcare supply chain model to ensure timely delivery of vaccines and supplies to COVID-19 patients that are the most vulnerable and hence the overall impact of COVID-19 can be minimized. The use of electrical vehicles for last mile transportation can help in significantly fighting the climate change. 
    more » « less
  4. Since the start of the COVID-19 pandemic, disruptions have been experienced in many supply chains, particularly in personal protective equipment, testing kits, and even essential household goods. Effective vaccines to protect against COVID-19 were approved for emergency use in the United States in late 2020, which led to one of the most extensive vaccination campaigns in history. We continuously collect data on vaccine allocation, shipment and distribution, administration, and inventory in the United States, covering the entire vaccination campaign. In this article, we describe some data sets that we collaborated to obtain. We are publishing the data and making them freely available to researchers, media organizations, and other stakeholders so that others may use the data to develop insights about the distribution and wastage of vaccines during the current pandemic or to provide an informed future pandemic response. This article gives an overview of vaccine distribution logistics in the United States, describes the data we obtain, outlines how they may be accessed and used by others, and describes some high-level analyses demonstrating some aspects of the data (for data collected during January 1, 2021–March 31, 2021). This article also provides directions for future research using the collected data. Our goal is two-fold: (i) We would like the data to be used in many creative ways to inform the current and future pandemic response. (ii) We also want to inspire other researchers to make their data publicly available in a timely manner. 
    more » « less
  5. null (Ed.)
    Public goods are often either over-consumed in the absence of regulatory mechanisms, or remain completely unused, as in the Covid-19 pandemic, where social distance constraints are enforced to limit the number of people who can share public spaces. In this work, we plug this gap through market based mechanisms designed to efficiently allocate capacity constrained public goods. To design these mechanisms, we leverage the theory of Fisher markets, wherein each agent in the economy is endowed with an artificial currency budget that they can spend to avail public goods. While Fisher markets provide a strong methodological backbone to model resource allocation problems, their applicability is limited to settings involving two types of constraints - budgets of individual buyers and capacities of goods. Thus, we introduce a modified Fisher market, where each individual may have additional physical constraints, characterize its solution properties and establish the existence of a market equilibrium. Furthermore, to account for additional constraints we introduce a social convex optimization problem where we perturb the budgets of agents such that the KKT conditions of the perturbed social problem establishes equilibrium prices. Finally, to compute the budget perturbations we present a fixed point scheme and illustrate convergence guarantees through numerical experiments. Thus, our mechanism, both theoretically and computationally, overcomes a fundamental limitation of classical Fisher markets, which only consider capacity and budget constraints. 
    more » « less