skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Beyond simple self-healing: How anisotropic nanogels adapt their shape to their environment
The response of soft colloids to crowding depends sensitively on the particles’ compressibility. Nanogel suspensions provide model systems that are often studied to better understand the properties of soft materials and complex fluids from the formation of colloidal crystals to the flow of viruses, blood, or platelet cells in the body. Large spherical nanogels, when embedded in a matrix of smaller nanogels, have the unique ability to spontaneously deswell to match their size to that of the nanogel composing the matrix. In contrast to hard colloids, this self-healing mechanism allows for crystal formation without giving rise to point defects or dislocations. Here, we show that anisotropic ellipsoidal nanogels adapt both their size and their shape depending on the nature of the particles composing the matrix in which they are embedded. Using small-angle neutron scattering with contrast variation, we show that ellipsoidal nanogels become spherical when embedded in a matrix of spherical nanogels. In contrast, the anisotropy of the ellipsoid is enhanced when they are embedded in a matrix of anisotropic nanogels. Our experimental data are supported by Monte Carlo simulations that reproduce the trend of decreasing aspect ratio of ellipsoidal nanogels with increasing crowding by a matrix of spherical nanogels.  more » « less
Award ID(s):
1928073
PAR ID:
10445636
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
19
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biofilms are aggregates of bacterial cells surrounded by an extracellular matrix. Much progress has been made in studying biofilm growth on solid substrates; however, little is known about the biophysical mechanisms underlying biofilm development in three-dimensional confined environments in which the biofilm-dwelling cells must push against and even damage the surrounding environment to proliferate. Here, combining single-cell imaging, mutagenesis, and rheological measurement, we reveal the key morphogenesis steps ofVibrio choleraebiofilms embedded in hydrogels as they grow by four orders of magnitude from their initial size. We show that the morphodynamics and cell ordering in embedded biofilms are fundamentally different from those of biofilms on flat surfaces. Treating embedded biofilms as inclusions growing in an elastic medium, we quantitatively show that the stiffness contrast between the biofilm and its environment determines biofilm morphology and internal architecture, selecting between spherical biofilms with no cell ordering and oblate ellipsoidal biofilms with high cell ordering. When embedded in stiff gels, cells self-organize into a bipolar structure that resembles the molecular ordering in nematic liquid crystal droplets. In vitro biomechanical analysis shows that cell ordering arises from stress transmission across the biofilm–environment interface, mediated by specific matrix components. Our imaging technique and theoretical approach are generalizable to other biofilm-forming species and potentially to biofilms embedded in mucus or host tissues as during infection. Our results open an avenue to understand how confined cell communities grow by means of a compromise between their inherent developmental program and the mechanical constraints imposed by the environment. 
    more » « less
  2. null (Ed.)
    Research on colloids is motivated by several factors. They can be used to answer fundamental questions related to the assembly of materials, and they have many potential applications in electronics, photonics, and life sciences. However, the rich variety of colloidal structures observed on the Earth can be influenced by the effects of gravity, which leads to particles settling and the motion of the surrounding fluid. To suppress the gravity effects, experiments on concentrated colloids of spherical and ellipsoidal fluorescent particles were carried out aboard the International Space Station. The particles were suspended in a decalin/tetralin mixture to match the particle refractive index. Confocal microscopy was used to visualize the particle behavior. The work was supported by the NSF CBET grants 1832260 and 1832291 and the NASA grant 80NSSC19K1655. 
    more » « less
  3. null (Ed.)
    Research on colloids is motivated by several factors. They can be used to answer fundamental questions related to the assembly of materials, and they have many potential applications in electronics, photonics, and life sciences. However, the rich variety of colloidal structures observed on the Earth can be influenced by the effects of gravity, which leads to particles settling and the motion of the surrounding fluid. To suppress the gravity effects, experiments on concentrated colloids of spherical and ellipsoidal fluorescent particles were carried out aboard the International Space Station. The particles were suspended in a decalin/tetralin mixture to match the particle refractive index. Confocal microscopy was used to visualize the particle behavior. The work was supported by the NSF CBET grants 1832260 and 1832291 and the NASA grant 80NSSC19K1655. 
    more » « less
  4. Abstract The anisotropy in the shape of polymeric particles has been demonstrated to have many advantages over spherical particulates, including bio‐mimetic behavior, shaped‐directed flow, deformation, surface adhesion, targeting, motion, and permeability. The layer‐by‐layer (LbL) assembly is uniquely suited for synthesizing anisotropic particles as this method allows for simple and versatile replication of diverse colloid geometries with precise control over their chemical and physical properties. This review highlights recent progress in anisotropic particles of micrometer and nanometer sizes produced by a templated multilayer assembly of synthetic and biological macromolecules. Synthetic approaches to produce capsules and hydrogels utilizing anisotropic templates such as biological, polymeric, bulk hydrogel, inorganic colloids, and metal–organic framework crystals as sacrificial templates are overviewed. Structure‐property relationships controlled by the anisotropy in particle shape and surface are discussed and compared with their spherical counterparts. Advances and challenges in controlling particle properties through varying shape anisotropy and surface asymmetry are outlined. The perspective applications of anisotropic colloids in biomedicine, including programmed behavior in the blood and tissues as artificial cells, nano‐motors/sensors, and intelligent drug carriers are also discussed. 
    more » « less
  5. null (Ed.)
    Colloidal gels represent an important class of soft matter, in which networks formed due to strong, short-range interactions display solid-like mechanical properties, such as a finite low-frequency elastic modulus. Here we examine the effect of embedded active colloids on the linear viscoelastic moduli of fractal cluster colloidal gels. We find that the autonomous, out-of-equilibrium dynamics of active colloids incorporated into the colloidal network decreases gel elasticity, in contrast to observed stiffening effects of myosin motors in actin networks. Fractal cluster gels are formed by the well-known mechanism of aggregating polystyrene colloids through addition of divalent electrolyte. Active Janus particles with a platinum hemisphere are created from the same polystyrene colloids and homogeneously embedded in the gels at dilute concentration at the time of aggregation. Upon addition of hydrogen peroxide – a fuel that drives the diffusiophoretic motion of the embedded Janus particles – the microdynamics and mechanical rheology change in proportion to the concentration of hydrogen peroxide and the number of active colloids. We propose a theoretical explanation of this effect in which the decrease in modulus is mediated by active motion-induced softening of the inter-particle attraction. Furthermore, we characterize the failure of the fluctuation–dissipation theorem in the active gels by identifying a discrepancy between the frequency-dependent macroscopic viscoelastic moduli and the values predicted by microrheology from measurement of the gel microdynamics. These findings support efforts to engineer gels for autonomous function by tuning the microscopic dynamics of embedded active particles. Such reconfigurable gels, with multi-state mechanical properties, could find application in materials such as paints and coatings, pharmaceuticals, self-healing materials, and soft robotics. 
    more » « less