skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Predicting Lower Band Chorus With Autoregressive‐Moving Average Transfer Function (ARMAX) Models
Abstract We model lower band chorus observations from the DEMETER satellite using daily and hourly autoregressive‐moving average transfer function (ARMAX) equations. ARMAX models can account for serial autocorrelation between observations that are measured close together in time and can be used to predict a response variable based on its past behavior without the need for recent data. Unstable distributions of radiation belt source electrons (tens of keV) and the substorm activity (SMEd from the SuperMAG array) that is thought to inject these electrons were both statistically significant explanatory variables in a daily ARMAX model describing chorus. Predictions from this model correlated well with observations in a hold‐out test data set (validation correlation of 0.675). Source electron flux was most influential when observations came from the same day or the day before the chorus measurement, with effects decaying rapidly over time. Substorms were more influential when they occurred on previous days, presumably due to their injecting source electrons from the plasma sheet. A daily ARMAX model with interplanetary magnetic field (IMF)|B|, IMFBz, and solar wind pressure as inputs instead of those given above was somewhat less predictive of chorus (r=0.611). An hourly ARMAX model with only solar wind and IMF inputs was even less successful, with a validation correlation of 0.502.  more » « less
Award ID(s):
1651263
PAR ID:
10445706
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
7
ISSN:
2169-9380
Page Range / eLocation ID:
p. 5692-5708
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electron fluxes (20 eV–2 MeV, RBSP‐A satellite) show reasonable simple correlation with a variety of parameters (solar wind, IMF, substorms, ultralow frequency (ULF) waves, geomagnetic indices) over L‐shells 2–6. Removing correlation‐inflating common cycles and trends (using autoregressive and moving average terms in an ARMAX analysis) results in a 10 times reduction in apparent association between drivers and electron flux, although many are still statistically significant (p < 0.05). Corrected influences are highest in the 20 eV–1 keV and 1–2 MeV electrons, more modest in the midrange (2–40 keV). Solar wind velocity and pressure (but not number density), IMF magnitude (with lower influence ofBz), SME (a substorm measure), a ULF wave index, and geomagnetic indices Kp and SymH all show statistically significant associations with electron flux in the corrected individual ARMAX analyses. We postulate that only pressure, ULF waves, and substorms are direct drivers of electron flux and compare their influences in a combined analysis. SME is the strongest influence of these three, mainly in the eV and MeV electrons. ULF is most influential on the MeV electrons. Pressure shows a smaller positive influence and some indication of either magnetopause shadowing or simply compression on the eV electrons. While strictly predictive models may improve forecasting ability by including indirect driver and proxy parameters, and while these models may be made more parsimonious by choosing not to explicitly model time series behavior, our present analyses include time series variables in order to draw valid conclusions about the physical influences of exogenous parameters. 
    more » « less
  2. Abstract The auroral substorm has been extensively studied over the last six decades. However, our understanding of its driving mechanisms is still limited and so is our ability to accurately forecast its onset. In this study, we present the first deep learning‐based approach to predict the onset of a magnetic substorm, defined as the signature of the auroral electrojets in ground magnetometer measurements. Specifically, we use a time history of solar wind speed (Vx), proton number density, and interplanetary magnetic field (IMF) components as inputs to forecast the occurrence probability of an onset over the next 1 hr. The model has been trained and tested on a data set derived from the SuperMAG list of magnetic substorm onsets and can correctly identify substorms ∼75% of the time. In contrast, an earlier prediction algorithm correctly identifies ∼21% of the substorms in the same data set. Our model's ability to forecast substorm onsets based on solar wind and IMF inputs prior to the actual onset time, and the trend observed in IMFBzprior to onset together suggest that a majority of the substorms may not be externally triggered by northward turnings of IMF. Furthermore, we find that IMFBzandVxhave the most significant influence on model performance. Finally, principal component analysis shows a significant degree of overlap in the solar wind and IMF parameters prior to both substorm and nonsubstorm intervals, suggesting that solar wind and IMF alone may not be sufficient to forecast all substorms, and preconditioning of the magnetotail may be an important factor. 
    more » « less
  3. Abstract Regression models (LEEMYR: Low Energy Electron MLT geosYnchronous orbit Regression) predict hourly 4.1–30 keV electron flux at geostationary orbit (GOES‐16) using solar wind, IMF, and geomagnetic index parameters. Multiplicative interaction and polynomial terms describe synergistic and nonlinear effects. We reduce predictors to an optimal set using stepwise regression, resulting in models with validation comparable to a neural network. Models predict 1, 3, 6, 12, and 24 hr into the future. Validation correlations are as high as 0.78 (4.1 and 11 keV, 1 hr prediction) and Heidke Skill scores (HSS) up to 0.66. A 3 hr ahead prediction is more practical, with slightly lower validation correlation (0.75) and HSS (0.61). The addition of location (MLT: magnetic local time) as a covariate, including multiplicative interaction terms, accounts for location‐dependent flux differences and variation of parameter influence, and allows prediction over the full orbit. Adding a substorm index (SME) provides minimal increase in validation correlation (0.81) showing that other parameters are good proxies for an unavailable real time substorm index. Prediction intervals on individual values provide more accurate assessments of model quality than confidence intervals on the mean values. An inverse N‐weighted least squares approach is impractical as it increases false positive warnings. Physical interpretations are not possible as spurious correlations due to common cycles are not removed. However,SME, Bz, Kp, and Dst are the highest correlates of electron flux, with solar wind velocity, density, and pressure, and IMF magnitude being less well correlated. 
    more » « less
  4. Abstract The total energy transfer from the solar wind to the magnetosphere is governed by the reconnection rate at the magnetosphere edges as the Z‐component of interplanetary magnetic field (IMFBz) turns southward. The geomagnetic storm on 21–22 January 2005 is considered to be anomalous as the SYM‐H index that signifies the strength of ring current, decreases and had a sustained trough value of −101 nT lasting more than 6 hr under northward IMFBzconditions. In this work, the standard WINDMI model is utilized to estimate the growth and decay of magnetospheric currents by using several solar wind‐magnetosphere coupling functions. However, it is found that the WINDMI model driven by any of these coupling functions is not fully able to explain the decrease of SYM‐H under northward IMFBz. A dense plasma sheet along with signatures of a highly stretched magnetosphere was observed during this storm. The SYM‐H variations during the entire duration of the storm were only reproduced after modifying the WINDMI model to account for the effects of the dense plasma sheet. The limitations of directly driven models relying purely on the solar wind parameters and not accounting for the state of the magnetosphere are highlighted by this work. 
    more » « less
  5. Abstract Magnetic reconnection occurring between the interplanetary magnetic field (IMF) and the dayside magnetopause causes a circulation of magnetic flux and plasma within the magnetosphere, known as the Dungey cycle. This circulation is transmitted to the ionosphere via field‐aligned currents (FACs). The magnetic flux transport within the Dungey cycle is quantified by the cross‐polar cap potential (CPCP or transpolar voltage). Previous studies have suggested that under strong driving conditions the CPCP can saturate near a value of 250 kV. In this study we investigate whether an analogous saturation occurs in the magnitudes of the FACs, using observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. The solar wind speed, density and pressure, theBzcomponent of the IMF, and combinations of these, were compared to the concurrent integrated current magnitude, across each hemisphere. We find that FAC magnitudes are controlled most strongly by solar wind speed and the orientation and strength of the IMF. FAC magnitude increases monotonically with solar wind driving but there is a distinct knee in the variation around IMFBz = −10 nT, above which the increase slows. 
    more » « less