As radio spectrum sharing matures, one of the main challenges becomes finding adequate governance systems and the appropriate enforcement mechanisms. Historically, these processes were assigned to a central entity (in most cases a governmental agency). Nevertheless, the literature of Common Pool Resources (CPRs) shows that other governance mechanisms are possible, which include collaboration with a private, thirdparty regulator or the complete absence of central institutions, as in self-enforcement solutions. These alternatives have been developed around well-known CPRs such as fisheries, forests, etc. As argued by Weiss et al [50], and other researchers, spectrum can indeed be considered to be a CPR. In this work we study the two extremes of governance systems that could be applied to spectrum sharing scenarios. Initially, we study the classical centralized scheme of command and control, where governmental institutions are in charge of rule-definition and enforcement. Subsequently, we explore a government-less environment, i.e., a distributed enforcement approach. In this anarchy situation (i.e., lack of a formal government intervention as defined by Leeson [29]), rules and enforcement mechanisms are solely the product of repeated interactions among the intervening agents. For our analysis, we have selected the spectrum sharing framework of the 1695-1710MHz band. We also use the definitions presented by Bhattarai et al. [9], [10] as well as Altamimi [3] for managing the size of the coordination and exclusion zones. In addition, we utilize Agent-Based Modelling (ABM) to analyze the applicability of these governance mechanisms. ABM simulation allows us to explore how macro phenomena can emerge from micro-level interactions of independent agents.
more »
« less
Blockchain and regenerative finance: charting a path toward regeneration
The Regenerative Finance (ReFi) movement aims to fundamentally transform the governance of global common pool resources (CPRs), such as the atmosphere, which are being degraded despite international efforts. The ReFi movement seeks to achieve this by utilizing digital monitoring, reporting, and verification (D-MRV); tokenization of assets; and decentralized governance approaches. However, there is currently a lack of a clear path forward to create and implement models that actually drive the “Re-” in ReFi beyond perpetuating the existing extractive economics and toward actual regeneration. In addition, ReFi suffers from growing pains, lacking a common interoperability framework and definition for determining what a ReFi project is and how the individual components align toward the grand ambition. This paper provides a definition of the ReFi stack of interconnected components and examines how it can address limitations in climate change accounting, finance and markets, and governance. The authors also examine the theory of regenerative economics and CPRs to encourage further discussions and advancements in the ReFi space. The crucial question remains if and how ReFi can drive a change in paradigm toward the effective regeneration of global CPRs.
more »
« less
- Award ID(s):
- 1932220
- PAR ID:
- 10445714
- Date Published:
- Journal Name:
- Frontiers in Blockchain
- Volume:
- 6
- ISSN:
- 2624-7852
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Stratospheric aerosol injection (SAI) and gene drive organisms (GDOs) have been proposed as technological responses to complex entrenched environmental challenges. They also share several characteristics of emerging risks, including extensive uncertainties, systemic interdependencies, and risk profiles intertwined with societal contexts. This Perspective conducts a comparative analysis of the two technologies, and identifies ways in which their research and policy communities may learn from each other to inform future risk governance strategies. We find that SAI and GDOs share common features of aiming to improve or restore a public good, are characterized by numerous potential ecological, societal, and ethical risks associated with deep uncertainty, and are challenged by how best to coordinate behavior of different actors. Meanwhile, SAI and GDOs differ in their temporal and spatial mode of deployment, spread, degree and type of reversibility, and potential for environmental monitoring. Based on this analysis, we find the field of SAI may learn from GDOs by enhancing its international collaborations for governance and oversight, while the field of GDOs may learn from SAI by investing in research focused on economics and decision-modeling. Additionally, given the relatively early development stages of SAI and GDOs, there may be ample opportunities to learn from risk governance efforts of other emerging technologies, including the need for improved monitoring and incorporating aspects of responsible innovation in research and any deployment.more » « less
-
Abstract Niche signals maintain stem cells in a prolonged quiescence or transiently activate them for proper regeneration 1 . Altering balanced niche signalling can lead to regenerative disorders. Melanocytic skin nevi in human often display excessive hair growth, suggesting hair stem cell hyperactivity. Here, using genetic mouse models of nevi 2,3 , we show that dermal clusters of senescent melanocytes drive epithelial hair stem cells to exit quiescence and change their transcriptome and composition, potently enhancing hair renewal. Nevus melanocytes activate a distinct secretome, enriched for signalling factors. Osteopontin, the leading nevus signalling factor, is both necessary and sufficient to induce hair growth. Injection of osteopontin or its genetic overexpression is sufficient to induce robust hair growth in mice, whereas germline and conditional deletions of either osteopontin or CD44, its cognate receptor on epithelial hair cells, rescue enhanced hair growth induced by dermal nevus melanocytes. Osteopontin is overexpressed in human hairy nevi, and it stimulates new growth of human hair follicles. Although broad accumulation of senescent cells, such as upon ageing or genotoxic stress, is detrimental for the regenerative capacity of tissue 4 , we show that signalling by senescent cell clusters can potently enhance the activity of adjacent intact stem cells and stimulate tissue renewal. This finding identifies senescent cells and their secretome as an attractive therapeutic target in regenerative disorders.more » « less
-
Abstract Scholarship is growing on societal transitions, describing radical societal change involving multiple sectors and scales, and transformative governance, describing how public, private, and civil society actors use tools of policy to pursue this fundamental change, aiming to build resiliency and sustainability. Much of this literature has a systems‐level focus and does not closely examine how governance participants, working individually or collectively, can steer a jurisdiction toward or away from transformativeness. This paper offers a corrective, integrating policy entrepreneurship scholarship with transformative governance research to advance understanding of how human agency underpins societal change. Drawing on accounts from 50 interviewees across eight case studies of US cities grappling with flooding hazards, we show how policy entrepreneurship can boost the political and economic resources that city officials rely upon to help propel radical shifts towards greater social, economic, and environmental equity.more » « less
-
Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years.more » « less
An official website of the United States government

