Abstract The Noah‐MP land surface model (LSM) relies on the Monin‐Obukhov (M‐O) Similarity Theory (MOST) to calculate land‐atmosphere exchanges of water, energy, and momentum fluxes. However, MOST flux‐profile relationships neglect canopy‐induced turbulence in the roughness sublayer (RSL) and parameterize within‐canopy turbulence in an ad hoc manner. We implement a new physics scheme (M‐O‐RSL) into Noah‐MP that explicitly parameterizes turbulence in RSL. We compare Noah‐MP simulations employing the M‐O‐RSL scheme (M‐O‐RSL simulations) and the default M‐O scheme (M‐O simulations) against observations obtained from 647 Snow Telemetry (SNOTEL) stations and two AmeriFlux stations in the western United States. M‐O‐RSL simulations of snow water equivalent (SWE) outperform M‐O simulations over 64% and 69% of SNOTEL sites in terms of root‐mean‐square‐error (RMSE) and correlation, respectively. The largest improvements in skill for M‐O‐RSL occur over closed shrubland sites, and the largest degradations in skill occur over deciduous broadleaf forest sites. Differences between M‐O and M‐O‐RSL simulated snowpack are primarily attributable to differences in aerodynamic conductance for heat underneath the canopy top, which modulates sensible heat flux. Differences between M‐O and M‐O‐RSL within‐canopy and below‐canopy sensible heat fluxes affect the amount of heat transported into snowpack and hence change snowmelt when temperatures are close to or above the melting point. The surface energy budget analysis over two AmeriFlux stations shows that differences between M‐O and M‐O‐RSL simulations can be smaller than other model biases (e.g., surface albedo). We intend for the M‐O‐RSL physics scheme to improve performance and uncertainty estimates in weather and hydrological applications that rely on Noah‐MP.
more »
« less
Can Convection‐Permitting Modeling Provide Decent Precipitation for Offline High‐Resolution Snowpack Simulations Over Mountains?
Abstract Accurate precipitation estimates are critical to simulating seasonal snowpack evolution. We conduct and evaluate high‐resolution (4‐km) snowpack simulations over the western United States (WUS) mountains in Water Year 2013 using the Noah with multi‐parameterization (Noah‐MP) land surface model driven by precipitation forcing from convection‐permitting (4‐km) Weather Research and Forecasting (WRF) modeling and four widely used high‐resolution datasets that are derived from statistical interpolation based on in situ measurements. Substantial differences in the precipitation amount among these five datasets, particularly over the western and northern portions of WUS mountains, significantly affect simulated snow water equivalent (SWE) and snow depth (SD) but have relatively limited effects on snow cover fraction (SCF) and surface albedo. WRF generally captures observed precipitation patterns and results in an overall best‐performed SWE and SD in the western and northern portions of WUS mountains, where the statistically interpolated datasets lead to underpredicted precipitation, SWE, and SD. Over the interior WUS mountains, all the datasets consistently underestimate precipitation, causing significant negative biases in SWE and SD, among which the results driven by the WRF precipitation show an average performance. Further analysis reveals systematic positive biases in SCF and surface albedo across the WUS mountains, with similar bias patterns and magnitudes for simulations driven by different precipitation datasets, suggesting an urgent need to improve the Noah‐MP snowpack physics. This study highlights that convection‐permitting modeling with proper configurations can have added values in providing decent precipitation for high‐resolution snowpack simulations over the WUS mountains in a typical ENSO‐neutral year, particularly over observation‐scarce regions.
more »
« less
- Award ID(s):
- 1739705
- PAR ID:
- 10445738
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 124
- Issue:
- 23
- ISSN:
- 2169-897X
- Page Range / eLocation ID:
- p. 12631-12654
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract When compared with differences in snow accumulation predicted by widely used hydrological models, there is a much greater divergence among otherwise “good” models in their simulation of the snow ablation process. Here, we explore differences in the performance of the Variable Infiltration Capacity model (VIC), Noah land surface model with multiparameterization options (Noah-MP), the Catchment model, and the third-generation Simplified Simple Biosphere model (SiB3) in their ability to reproduce observed snow water equivalent (SWE) during the ablation season at 10 Snowpack Telemetry (SNOTEL) stations over 1992–2012. During the ablation period, net radiation generally has stronger correlations with observed melt rates than does air temperature. Average ablation rates tend to be higher (in both model predictions and observations) at stations with a large accumulation of SWE. The differences in the dates of last snow between models and observations range from several days to approximately a month (on average 5.1 days earlier than in observations). If the surface cover in the models is changed from observed vegetation to bare soil in all of the models, only the melt rate of the VIC model increases. The differences in responses of models to canopy removal are directly related to snowpack energy inputs, which are further affected by different algorithms for surface albedo and energy allocation across the models. We also find that the melt rates become higher in VIC and lower in Noah-MP if the shrub/grass present at the observation sites is switched to trees.more » « less
-
Abstract Effective water resource management in the western United States (WUS) is possible only with accurate monitoring and forecasting of seasonal snowpack. Seasonal snowpack, a major water source for the WUS, is declining due to anthropogenic climate change. Overprinted on this trends is year-to-year variance in snowpack extent and mass due to influences from teleconnections related to the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Recently in the 2015 and 2016 winters, extreme droughts in the coastal WUS, mainly the Pacific Northwest (PNW) states of Washington and Oregon were linked with anomalously warm sea surface temperatures (SST) in northeastern Pacific Ocean. Here, we use convergent cross maps (CCMs) to analyze time series of SSTs and snow water equivalent (SWE) in the PNW. For some ecoregions, we show that extratropical SSTs may have a stronger influence on snowfall and snow accumulation in the PNW compared to tropical indices of climatic variability. Cold (warm) SSTs in the northeast Pacific lead to high (low) snow years. CCMs also performed better in recreating SWE anomalies compared to linear regressions with lagged predictor variables. Accounting for the influence of SSTs may help water resource managers to better predict and prepare for extreme snow events in the future.more » « less
-
This study investigates the impacts of climate change on precipitation and snowpack in the interior western United States (IWUS) using two sets of convection-permitting Weather Research and Forecasting model simulations. One simulation represents the ~1990 climate, and another represents an ~2050 climate using a pseudo-global warming approach. Climate perturbations for the future climate are given by the CMIP5 ensemble-mean global climate models under the high-end emission scenario. The study analyzes the projected changes in spatial patterns of seasonal precipitation and snowpack, with particular emphasis on the effects of elevation on orographic precipitation and snowpack changes in four key mountain ranges: the Montana Rockies, Greater Yellowstone area, Wasatch Range, and Colorado Rockies. The IWUS simulations reveal an increase in annual precipitation across the majority of the IWUS in this warmer climate, driven by more frequent heavy to extreme precipitation events. Winter precipitation is projected to increase across the domain, while summer precipitation is expected to decrease, particularly in the High Plains. Snow-to-precipitation ratios and snow water equivalent are expected to decrease, especially at lower elevations, while snowpack melt is projected to occur earlier by up to 26 days in the ~2050 climate, highlighting significant impacts on regional water resources and hydrological management.more » « less
-
Abstract Dynamical downscaling with a 20 km horizontal resolution was undertaken over East Asia for the period May–August in 1991–2015 using the Weather Research and Forecasting (WRF) model with Grell-3D ensemble cumulus parameterization as a product of the Impact of Initialized Land Temperature and Snowpack on Sub-Seasonal to Seasonal Prediction (LS4P) program. Simulated climatological precipitation biases were investigated over land during June when heavy precipitation occurred. Simulations underestimated precipitation along the Meiyu/Baiu rainband, while overestimating it farther north. Dry and wet biases expanded to south and north of the Yangtze River in China, respectively, marking years with poor precipitation simulations. Model biases in synoptic-scale circulation patterns indicate a weakened clockwise circulation over the western North Pacific in the model due to active convection there, and suppressed northward moisture transport to the Meiyu/Baiu rainband. Moisture convergence was slightly enhanced over central China due to an apparent anticyclonic circulation bias over northern China. In years with large biases, positive feedback between reduced moisture inflow and inactive convection occurred over southern China, while moisture transport to central China intensified on regional scales, with amplification of dry and wet biases over China. The Kain–Fritch scheme was used to test the influence of cumulus parameterization, improving the dry bias over southern China due to the modification of synoptic-scale circulation patterns in the lower troposphere. However, precipitation was further overestimated over central China, with the accuracy of precipitation distribution deteriorating.more » « less
An official website of the United States government
