The simultaneous analysis of the three stable isotopes of oxygen—triple oxygen isotope analysis—has become an important analytical technique in natural sciences. Determination of the abundance of the rare17O isotope in CO2gas using magnetic sector isotope ratio mass spectrometry is complicated by the isobaric interference of17O by13C (13C16O16O and12C16O17O, both have mass 45 amu). A number of analytical techniques have been used to measure the17O/16O ratio of CO2gas. They either are time consuming and technically challenging or have limited precision. A rapid and precise alternative to the available analytical methods is desirable.
We present the results of triple oxygen isotope analyses using an Aerodyne tunable infrared laser direct absorption spectroscopy (TILDAS) CO2analyzer configured for16O,17O, and18O combined with a custom gas inlet system. We evaluate the sensitivity of our results to a number of parameters. CO2samples with a wide range of δ18O values (from −9.28‰ to 39.56‰) were measured and compared to results using the well‐established fluorination‐gas source mass spectrometry method.
The TILDAS system has a precision (standard error, 2
We have successfully developed an analytical technique for the simultaneous determination of the δ17O and δ18O values of CO2gas. The precision is equal to or better than that of existing techniques, with no additional chemical treatments required. Analysis time is rapid, and the system is easily automated so that large numbers of samples can be analyzed with minimal effort.