skip to main content

Title: A simple CO 2 equilibration method for measuring blood oxygen isotope compositions

Blood water oxygen isotope compositions can provide valuable insights into physiological processes and ecological patterns. While blood samples are commonly drawn for medical or scientific purposes, blood fractions are infrequently measured for oxygen isotopic compositions (δ18O) because such measurements are time consuming and expensive.


We sampled blood from sheep, goats, and iguanas raised in field and animal laboratories into serum, EDTA, heparin, and uncoated plastic vials commonly used in medical and scientific research, then separated red blood cell (RBC) and plasma or serum blood fractions. These were injected into helium‐flushed Exetainer tubes where they naturally outgassed endogenous CO2(goat blood), or into He‐ and CO2‐flushed tubes (iguana blood). The CO2gas was sampled on a GasBench II system, and δ18O was measured by an isotope ratio mass spectrometer (IRMS).


Repeated δ18O measurements were stable over multiple days. The addition of desiccated blood solids to water standards had little impact on their δ18O measurements, suggesting that organic molecular constituents within blood serum and plasma do not interfere with blood water δ18O values. We observed slight but statistically significant δ18O offsets between plasma, serum and RBC fractions. Mass‐dependent body water turnover times for iguanas were derived from the data.


We demonstrate that a simple blood‐CO2equilibration method using the GasBench can quickly, reliably and accurately characterize water δ18O in the plasma, RBC, and whole blood fractions of mammalian and reptilian blood samples (precision ≤ 0.1‰). This method will expand the application of blood stable isotope analysis in physiological and medical research.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Rapid Communications in Mass Spectrometry
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lacustrine δ2H and δ18O isotope proxies are powerful tools for reconstructing past climate and precipitation changes in the Arctic. However, robust paleoclimate record interpretations depend on site‐specific lake water isotope systematics, which are poorly described in the eastern Canadian Arctic due to insufficient modern lake water isotope data. We use modern lake water isotopes (δ18O and δ2H) collected between 1994–1997 and 2017–2021 from a transect of sites spanning a Québec‐to‐Ellesmere Island gradient to evaluate the effects of inflow seasonality and evaporative enrichment on the δ2H and δ18O composition of lake water. Four lakes near Iqaluit, Nunavut sampled biweekly through three ice‐free seasons reflect mean annual precipitation isotopes with slight evaporative enrichment. In a 23° latitudinal transect of 181 lakes, through‐flowing lake water δ2H and δ18O fall along local meteoric water lines. Despite variability within each region, we observe a latitudinal pattern: southern lakes reflect mean annual precipitation isotopes, whereas northern lakes reflect summer‐biased precipitation isotopes. This pattern suggests that northern lakes are more fully flushed with summer precipitation, and we hypothesize that this occurs because the ratio of runoff to precipitation increases with latitude as vegetation cover decreases. Therefore, proxy records from through‐flowing lakes in this region should reflect precipitation isotopes with minimal influence of evaporation, but vegetation changes in lake catchments across a latitudinal transect and through geologic time may influence the seasonality of lake water isotopic compositions. Thus, we recommend that future lake water isotope proxy records are considered in context with temperature and ecological proxy records.

    more » « less
  2. Rationale

    The isotopic measurement of environmental sample CO2via isotope ratio mass spectrometry (IRMS) can present many analytical challenges. In many offline applications, exceedingly few samples can be prepared per day. In such applications, long‐term storage (months) of sample CO2is desirable, in order to accumulate enough samples to warrant a day of isotopic measurements. Conversely, traditional sample tube cracker systems for dual‐inlet IRMS offer a capacity for only 6–8 tubes and thus limit throughput. Here we present a simple method to alleviate these concerns using a Gas Bench II gas handling device coupled with continuous‐flow IRMS.


    Sample preparation entails the cryogenic purification and quantification of CO2on a vacuum line. Sample CO2splits are expanded from a known volume to several sample ports and allowed to isotopically equilibrate (homogenize). Equilibrated CO2splits are frozen into 3 mm outer diameter Pyrex break‐seals and sealed under vacuum with a torch to a length of 5.5 cm. Sample break‐seals are scored, placed into 12 mL Labco Exetainer®vials, purged with ultrahigh‐purity helium, cracked inside the capped helium‐flushed vials and subsequently measured via a Gas Bench equipped IRMS instrument using a CTC Analytics PAL autosampler.


    Our δ13C results from NIST and internal isotopic standards, measured over a time period of several years, indicate that the sealed‐tube method produces accurate δ13C values to a precision of ±0.1‰ for samples containing 10–35 μgC. The tube cracking technique within Exetainer vials has been optimized over a period of 10 years, resulting in decreased sample failure rates from 5–10% to <1%.


    This technique offers an alternative method for δ13C analyses of CO2where offline isolation and long‐term storage are desired. The method features a much higher sample throughput than traditional dual‐inlet IRMS cracker setups at similar precision (±0.1‰).

    more » « less
  3. Abstract

    Blood Falls is a hypersaline, iron‐rich discharge at the terminus of the Taylor Glacier in the McMurdo Dry Valleys, Antarctica. In November 2014, brine in a conduit within the glacier was penetrated and sampled using clean‐entry techniques and a thermoelectric melting probe called the IceMole. We analyzed the englacial brine sample for filterable iron (fFe), total Fe, major cations and anions, nutrients, organic carbon, and perchlorate. In addition, aliquots were analyzed for minor and trace elements and isotopes including δD and δ18O of water, δ34S and δ18O of sulfate,234U,238U, δ11B,87Sr/86Sr, and δ81Br. These measurements were made in order to (1) determine the source and geochemical evolution of the brine and (2) compare the chemistry of the brine to that of nearby hypersaline lake waters and previous supraglacially sampled collections of Blood Falls outflow that were interpreted asendmemberbrines. The englacial brine had higher Clconcentrations than the Blood Falls end‐member outflow; however, other constituents were similar. The isotope data indicate that the water in the brine is derived from glacier melt. The H4SiO4concentrations and U and Sr isotope suggest a high degree of chemical weathering products. The brine has a low N:P ratio of ~7.2 with most of the dissolved inorganic nitrogen in the form of NH4+. Dissolved organic carbon concentrations are similar to end‐member outflow values. Our results provide strong evidence that the original source of solutes in the brine was ancient seawater, which has been modified with the addition of chemical weathering products.

    more » « less
  4. Abstract

    The timescales associated with precipitation moving through watersheds reveal processes that are critical to understanding many hydrologic systems. Measurements of environmental stable water isotope ratios (δ2H and δ18O) have been used as tracers to study hydrologic timescales by examining how long it takes for incoming precipitation tracers become stream discharge, yet limited measurements both spatially and temporally have bounded macroscale evaluations so far. In this observation driven study across North American biomes within the National Ecological Observation Network (NEON), we examined δ18O and δ2H stable water isotope in precipitation (δP) and stream water (δQ) at 26 co‐located sites. With an average 54 precipitation samples and 139 stream water samples per site collected over 2014–2022, assessment of local meteoric water lines and local stream water lines showed geographic variation across North America. Taking the ratio of estimated seasonal amplitudes of δP and δQ to calculate young water fractions (Fyw), showed aFywrange from 1% to 93% with most sites havingFywbelow 20%. Calculated mean transit times (MTT) based on a gamma convolution model showed a MTT range from 0.10 to 13.2 years, with half of the sites having MTT estimates lower than 2 years. Significant correlations were found between theFywand watershed area, longest flow length, and the longest flow length/slope. Significant correlations were found between MTT and site latitude, longitude, slope, clay fraction, temperature, precipitation magnitude, and precipitation frequency. The significant correlations between water timescale metrics and the environmental characteristics we report share some similarities with those reported in prior studies, demonstrating that these quantities are primarily driven by site or area specific factors. The analysis of isotope data presented here provides important constraints on isotope variation in North American biomes and the timescales of water movement through NEON study sites.

    more » « less
  5. Rationale

    The grey seal,Halichoerus grypus(GS), and the northern elephant seal,Mirounga angustirostris(NES), come ashore for reproduction. This period involves intense physiological processes such as lactation in females and a developmental post‐weaning fast in juveniles. Previous studies have shown thatδ13C andδ15N values are affected by starvation, but the precise effects of fasting associated with lactation and post‐weaning fast in seals remain poorly understood.


    To examine the effect of lactation and post‐weaning fast on stable isotope ratios in GS and NES, blood and hair were sampled from 21 GS mother‐pup pairs on the Isle of May and on 22 weaned NES pups at Año Nuevo State Reserve during their respective breeding seasons. Milk samples were also collected from GS mothers. Stable isotope measurements were performed with an isotope ratio mass spectrometer coupled to an N‐C elemental analyser.


    Changes in stable isotope ratios in blood components during fasting were similar and weak between GS and NES mothers especially in blood cells (GS:Δ15N = 0.05‰,Δ13C = 0.02‰; NES:Δ15N = 0.1‰,Δ13C = 0.1‰). GS showed a15N discrimination factor between maternal and pup blood cells and milk, but not for13C. The strongest relationship between the isotopic compositions of the mother and the pup was observed in the blood cells.


    Isotopic consequences of lactation, fasting, and growth seem limited in NES and GS, especially in medium‐term integrator tissues of feeding activity such as blood cells. Stable isotope ratios in the blood of pups and mothers are correlated. We observed a subtle mother‐to‐pup fractionation factor. Our results suggest that pup blood cells are mostly relevant for exploring the ecology of female seals.

    more » « less