skip to main content


Title: Changes in stable isotope compositions during fasting in phocid seals
Rationale

The grey seal,Halichoerus grypus(GS), and the northern elephant seal,Mirounga angustirostris(NES), come ashore for reproduction. This period involves intense physiological processes such as lactation in females and a developmental post‐weaning fast in juveniles. Previous studies have shown thatδ13C andδ15N values are affected by starvation, but the precise effects of fasting associated with lactation and post‐weaning fast in seals remain poorly understood.

Methods

To examine the effect of lactation and post‐weaning fast on stable isotope ratios in GS and NES, blood and hair were sampled from 21 GS mother‐pup pairs on the Isle of May and on 22 weaned NES pups at Año Nuevo State Reserve during their respective breeding seasons. Milk samples were also collected from GS mothers. Stable isotope measurements were performed with an isotope ratio mass spectrometer coupled to an N‐C elemental analyser.

Results

Changes in stable isotope ratios in blood components during fasting were similar and weak between GS and NES mothers especially in blood cells (GS:Δ15N = 0.05‰,Δ13C = 0.02‰; NES:Δ15N = 0.1‰,Δ13C = 0.1‰). GS showed a15N discrimination factor between maternal and pup blood cells and milk, but not for13C. The strongest relationship between the isotopic compositions of the mother and the pup was observed in the blood cells.

Conclusions

Isotopic consequences of lactation, fasting, and growth seem limited in NES and GS, especially in medium‐term integrator tissues of feeding activity such as blood cells. Stable isotope ratios in the blood of pups and mothers are correlated. We observed a subtle mother‐to‐pup fractionation factor. Our results suggest that pup blood cells are mostly relevant for exploring the ecology of female seals.

 
more » « less
NSF-PAR ID:
10459671
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Rapid Communications in Mass Spectrometry
Volume:
33
Issue:
2
ISSN:
0951-4198
Page Range / eLocation ID:
p. 176-184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rationale

    Nitrogen stable isotope ratio (δ15N) processes are not well described in reptiles, which limits reliable inference of trophic and nutrient dynamics. In this study we detailed δ15N turnover and discrimination (Δ15N) in diverse tissues of two lizard species, and compared these results with previously published carbon data (δ13C) to inform estimates of reptilian foraging ecology and nutrient physiology.

    Methods

    We quantified15N incorporation and discrimination dynamics over 360 days in blood fractions, skin, muscle, and liver ofSceloporus undulatusandCrotaphytus collaristhat differed in body mass. Tissue samples were analyzed on a continuous flow isotope ratio mass spectrometer.

    Results

    Δ15N for plasma and red blood cells (RBCs) ranged between +2.7 and +3.5‰; however, skin, muscle, and liver did not equilibrate, hindering estimates for these somatic tissues.15N turnover in plasma and RBCs ranged from 20.7 ± 4 to 303 ± 166 days among both species. Comparison with previously published δ13C results for these same samples showed that15N and13C incorporation patterns were uncoupled, especially during winter when hibernation physiology could have played a role.

    Conclusions

    Our results provide estimates of15N turnover rates and discrimination values that are essential to using and interpreting isotopes in studies of diet reconstruction, nutrient allocation, and trophic characterization in reptiles. These results also suggest that somatic tissues can be unreliable, while life history shifts in nutrient routing and metabolism potentially cause15N and13C dynamics to be decoupled.

     
    more » « less
  2. Rationale

    Plant lipid biomarkers, such as plant waxes and terpenoids, and the stable isotopic composition of bulk leaves are widely used in both modern and paleoclimate studies for tracking vegetation and climate. However, the effects of different drying methods on the preservation of plant lipid biomarkers and the stable isotopic compositions of leaves are less explored. Here, we investigated various drying methods for the measurement of plant lipid concentrations and bulk leaf isotopic compositions.

    Methods

    Leaves from four tree species (Acer rubrum,Pinus sylvestris,Platanus occidentalis, andTaxodium distichum) were collected and dried using air, an oven, a freeze‐dryer, and a microwave. We compared concentrations of leaf waxes and terpenoids and carbon (δ13C) and nitrogen (δ15N) isotopic compositions of leaves by different drying methods.

    Results

    The air, oven, freeze‐dryer, and microwave drying methods did not affect lipid concentrations significantly, and only a few homologues differed (38.1% or 41.8 μg/g on average) possibly due to biological variations or enhanced extraction efficiencies. The δ13C values were not affected by drying methods, whereas the δ15N values in oven‐dried leaves in some species were higher by 0.2–0.7‰ than those obtained by other methods. Though small, we attribute these patterns to loss of leaf compounds with lower isotope ratios during oven‐drying.

    Conclusions

    Based on our results, each drying technique yielded equivalent results for all plant wax and terpenoid concentrations and bulk leaf δ13C values; however, oven‐drying modified the δ15N values.

     
    more » « less
  3. Abstract Objectives

    Ecological similarity between species can lead to interspecific trophic competition. However, when ecologically similar species coexist, they may differ in foraging strategies and habitat use, which can lead to niche partitioning. As the body tissues of consumers contain a stable isotope signature that reflects the isotopic composition of their diet, stable isotope analysis is a useful tool to study feeding behavior. We measured the isotopic niche width, which is a proxy for trophic niche width, of mantled (Alouatta palliata) and black (A. pigra) howler monkeys. Specifically, studied populations in allopatry and sympatry to assess whether these species showed niche partitioning.

    Materials and Methods

    Between 2008 and 2012, we collected hair samples from 200 subjects (113 black and 87 mantled howler monkeys) and used continuous flow isotope ratio mass spectrometry to estimateδ13C andδ15N. We described the isotopic niche width of each species in allopatry and sympatry with the Bayesian estimation of the standard ellipse areas.

    Results

    In allopatry, isotopic niche width and isotopic variation were similar in both species. In sympatry, black howler monkeys had a significantly broader isotopic niche, which was mainly determined by highδ15N values, and included the majority of mantled howler monkeys' isotopic niche. The isotopic niche of mantled howler monkeys did not differ between sympatry and allopatry.

    Conclusions

    The coexistence of these ecologically similar species may be linked to trophic niche adjustments by one species, although the particular features of such adjustments (e.g., dietary, spatial, or sensory partitioning) remain to be addressed.

     
    more » « less
  4. 1. Life history theory predicts allocation of energy to reproduction varies with maternal age, but additional maternal features may be important to the allocation of energy to reproduction. 2. We aimed to characterize age-specific variation in maternal allocation and assess the relationship between maternal allocation and other static and dynamic maternal features. 3. Mass measurements of 531 mothers and pups were used with Bayesian hierarchical models to explain the relationship between diverse maternal attributes and both the proportion of mass allocated by Weddell seal mothers, and the efficiency of mass transfer from mother to pup during lactation as well as the weaning mass of pups. 4. Our results demonstrated that maternal mass was strongly and positively associated with the relative reserves allocated by a mother and a pup's weaning mass but that the efficiency of mass transfer declines with maternal parturition mass. Birthdate was positively associated with proportion mass allocation and pup weaning mass, but mass transfer efficiency was predicted to be highest at the mean birthdate. The relative allocation of maternal reserves declined with maternal age but the efficiency of mass transfer to pups increases, suggestive of selective disappearance of poor-quality mothers. 5. These findings highlight the importance of considering multiple maternal features when assessing variation in maternal allocation. 
    more » « less
  5. Rationale

    It is imperative to understand how chemical preservation alters tissue isotopic compositions before using historical samples in ecological studies. Specifically, although compound‐specific isotope analysis of amino acids (CSIA‐AA) is becoming a widely used tool, there is little information on how preservation techniques affect amino acidδ15N values.

    Methods

    We evaluated the effects of chemical preservatives on bulk tissueδ13C andδ15N and amino acidδ15N values, measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS), of (a) tuna (Thunnus albacares) and squid (Dosidicus gigas) muscle tissues that were fixed in formaldehyde and stored in ethanol for 2 years and (b) two copepod species,Calanus pacificusandEucalanus californicus, which were preserved in formaldehyde for 24–25 years.

    Results

    Tissues in formaldehyde‐ethanol had higher bulkδ15N values (+1.4,D. gigas; +1.6‰,T. albacares), higherδ13C values forD. gigas(+0.5‰), and lowerδ13C values forT. albacares(−0.8‰) than frozen samples. The bulkδ15N values from copepods were not different those from frozen samples, although theδ13C values from both species were lower (−1.0‰ forE. californicusand −2.2‰ forC. pacificus) than those from frozen samples. The mean amino acidδ15N values from chemically preserved tissues were largely within 1‰ of those of frozen tissues, but the phenylalanineδ15N values were altered to a larger extent (range: 0.5–4.5‰).

    Conclusions

    The effects of preservation on bulkδ13C values were variable, where the direction and magnitude of change varied among taxa. The changes in bulkδ15N values associated with chemical preservation were mostly minimal, suggesting that storage in formaldehyde or ethanol will not affect the interpretation ofδ15N values used in ecological studies. The preservation effects on amino acidδ15N values were also mostly minimal, mirroring bulkδ15N trends, which is promising for future CSIA‐AA studies of archived specimens. However, there were substantial differences in phenylalanine and valineδ15N values, which we speculate resulted from interference in the chromatographic resolution of unknown compounds rather than alteration of tissue isotopic composition due to chemical preservation.

     
    more » « less