skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Three‐dimensional elastic beam frames: Rigid joint conditions in variational and differential formulation
Abstract We consider three‐dimensional elastic frames constructed out of Euler–Bernoulli beams and describe a simple process of generating joint conditions out of the geometric description of the frame. The corresponding differential operator is shown to be self‐adjoint. In the special case of planar frames, the operator decomposes into a direct sum of two operators, one coupling out‐of‐plane displacement to angular (torsional) displacement and the other coupling in‐plane displacement with axial displacement (compression). Detailed analysis of two examples is presented. We actively exploit the symmetry present in the examples and decompose the operator by restricting it onto reducing subspaces corresponding to irreducible representations of the symmetry group. These “quotient” operators are shown to capture particular oscillation modes of the frame.  more » « less
Award ID(s):
1815075
PAR ID:
10445793
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Studies in Applied Mathematics
Volume:
148
Issue:
4
ISSN:
0022-2526
Page Range / eLocation ID:
p. 1586-1623
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Current induced spin-orbit torque (SOT) holds great promise for next generation magnetic-memory technology. Field-free SOT switching of perpendicular magnetization requires the breaking of in-plane symmetry, which can be artificially introduced by external magnetic field, exchange coupling or device asymmetry. Recently it has been shown that the exploitation of inherent crystal symmetry offers a simple and potentially efficient route towards field-free switching. However, applying this approach to the benchmark SOT materials such as ferromagnets and heavy metals is challenging. Here, we present a strategy to break the in-plane symmetry of Pt/Co heterostructures by designing the orientation of Burgers vectors of dislocations. We show that the lattice of Pt/Co is tilted by about 1.2° when the Burgers vector has an out-of-plane component. Consequently, a tilted magnetic easy axis is induced and can be tuned from nearly in-plane to out-of-plane, enabling the field-free SOT switching of perpendicular magnetization components at room temperature with a relatively low current density (~1011 A/m2) and excellent stability (> 104cycles). This strategy is expected to be applicable to engineer a wide range of symmetry-related functionalities for future electronic and magnetic devices. 
    more » « less
  2. Multiple (Ed.)
    A<sc>bstract</sc> Powerful techniques have been developed in quantum field theory that employ algebras of local operators, yet local operators cannot create physical charged states in gauge theory or physical nonzero-energy states in perturbative quantum gravity. A common method to obtain physical operators out of local ones is to dress the latter using appropriate Wilson lines. This procedure destroys locality, it must be done case by case for each charged operator in the algebra, and it rapidly becomes cumbersome, particularly in perturbative quantum gravity. In this paper we present an alternative approach to the definition of physical charged operators: we define an automorphism that maps an algebra of local charged operators into a (non-local) algebra of physical charged operators. The automorphism is described by a formally unitary intertwiner mapping the exact BRS operator associated to the gauge symmetry into its quadratic part. The existence of an automorphism between local operators and the physical ones, describing charged states, allows to retain many of the results derived in local operator algebras and extend them to the physical-but-nonlocal algebra of charged operators as we discuss in some simple applications of our construction. We also discuss a formal construction of physical states and possible obstructions to it. 
    more » « less
  3. The low-energy, finite-volume spectrum of the two-nucleon system at a quark mass corresponding to a pion mass of m π 806 MeV is studied with lattice quantum chromodynamics (LQCD) using variational methods. The interpolating-operator sets used in [Variational study of two-nucleon systems with lattice QCD, .] are extended by including a complete basis of local hexaquark operators, as well as plane-wave dibaryon operators built from products of both positive- and negative-parity nucleon operators. Results are presented for the isosinglet and isotriplet two-nucleon channels. In both channels, noticeably weaker variational bounds on the lowest few energy eigenvalues are obtained from operator sets which contain only hexaquark operators or operators constructed from the product of two negative-parity nucleons, while other operator sets produce low-energy variational bounds which are consistent within statistical uncertainties. The consequences of these studies for the LQCD understanding of the two-nucleon spectrum are investigated. Published by the American Physical Society2025 
    more » « less
  4. Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure $$F: \Omega \to B(H)$$ has an integral representation of the form $$F(E) =\sum_{k=1}^{m} \int_{E}\, G_{k}(\omega)\otimes G_{k}(\omega) d\mu(\omega)$$ for some weakly measurable maps $$G_{k} \ (1\leq k\leq m) $$ from a measurable space $$\Omega$$ to a Hilbert space $$\mathcal{H}$$ and some positive measure $$\mu$$ on $$\Omega$$. Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic. 
    more » « less
  5. Abstract Iterative thresholding algorithms seek to optimize a differentiable objective function over a sparsity or rank constraint by alternating between gradient steps that reduce the objective and thresholding steps that enforce the constraint. This work examines the choice of the thresholding operator and asks whether it is possible to achieve stronger guarantees than what is possible with hard thresholding. We develop the notion of relative concavity of a thresholding operator, a quantity that characterizes the worst-case convergence performance of any thresholding operator on the target optimization problem. Surprisingly, we find that commonly used thresholding operators, such as hard thresholding and soft thresholding, are suboptimal in terms of worst-case convergence guarantees. Instead, a general class of thresholding operators, lying between hard thresholding and soft thresholding, is shown to be optimal with the strongest possible convergence guarantee among all thresholding operators. Examples of this general class includes $$\ell _q$$ thresholding with appropriate choices of $$q$$ and a newly defined reciprocal thresholding operator. We also investigate the implications of the improved optimization guarantee in the statistical setting of sparse linear regression and show that this new class of thresholding operators attain the optimal rate for computationally efficient estimators, matching the Lasso. 
    more » « less