skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1815075

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We consider three‐dimensional elastic frames constructed out of Euler–Bernoulli beams and describe a simple process of generating joint conditions out of the geometric description of the frame. The corresponding differential operator is shown to be self‐adjoint. In the special case of planar frames, the operator decomposes into a direct sum of two operators, one coupling out‐of‐plane displacement to angular (torsional) displacement and the other coupling in‐plane displacement with axial displacement (compression). Detailed analysis of two examples is presented. We actively exploit the symmetry present in the examples and decompose the operator by restricting it onto reducing subspaces corresponding to irreducible representations of the symmetry group. These “quotient” operators are shown to capture particular oscillation modes of the frame. 
    more » « less
  2. In many applied problems one seeks to identify and count the critical points of a particular eigenvalue of a smooth parametric family of self-adjoint matrices, with the parameter space often being known and simple, such as a torus. Among particular settings where such a question arises are the Floquet–Bloch decomposition of periodic Schrödinger operators, topology of potential energy surfaces in quantum chemistry, spectral optimization problems such as minimal spectral partitions of manifolds, as well as nodal statistics of graph eigenfunctions. In contrast to the classical Morse theory dealing with smooth functions, the eigenvalues of families of self-adjoint matrices are not smooth at the points corresponding to repeated eigenvalues (called, depending on the application and on the dimension of the parameter space, the diabolical/Dirac/Weyl points or the conical intersections). This work develops a procedure for associating a Morse polynomial to a point of eigenvalue multiplicity; it utilizes the assumptions of smoothness and self-adjointness of the family to provide concrete answers. In particular, we define the notions of non-degenerate topologically critical point and generalized Morse family, establish that generalized Morse families are generic in an appropriate sense, establish a differential first-order conditions for criticality, as well as compute the local contribution of a topologically critical point to the Morse polynomial. Remarkably, the non-smooth contribution to the Morse polynomial turns out to depend only on the size of the eigenvalue multiplicity and the relative position of the eigenvalue of interest and not on the particulars of the operator family; it is expressed in terms of the homologies of Grassmannians. 
    more » « less
  3. We derive several upper bounds on the spectral gap of the Laplacian on compact metric graphs with standard or Dirichlet vertex conditions. In particular, we obtain estimates based on the length of a shortest cycle (girth), diameter, total length of the graph, as well as further metric quantities introduced here for the first time, such as the avoidance diameter. Using known results about Ramanujan graphs, a class of expander graphs, we also prove that some of these metric quantities, or combinations thereof, do not to deliver any spectral bounds with the correct scaling. 
    more » « less