The DOMAINS REARRANGED METHYLTRANSFERASEs (DRMs) are crucial for RNA‐directed DNA methylation (RdDM) in plant species.
- PAR ID:
- 10445834
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- Volume:
- 111
- Issue:
- 1
- ISSN:
- 0960-7412
- Page Range / eLocation ID:
- p. 103-116
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
SUMMARY Medicago truncatula is a model legume for fundamental research on legume biology and symbiotic nitrogen fixation.Tnt1 , a retrotransposon from tobacco, was used to generate insertion mutants inM. truncatula R108. Approximately 21 000 insertion lines have been generated and publicly available.Tnt1 retro‐transposition event occurs during somatic embryogenesis (SE), a pivotal process that triggers massive methylation changes. We studied the SE ofM. truncatula R108 using leaf explants and explored the dynamic shifts in the methylation landscape from leaf explants to callus formation and finally embryogenesis. Higher cytosine methylation in all three contexts of CG, CHG, and CHH patterns was observed during SE compared to the controls. Higher methylation patterns were observed in assumed promoter regions (~2‐kb upstream regions of transcription start site) of the genes, while lowest was recorded in the untranslated regions. Differentially methylated promoter region analysis showed a higher CHH methylation in embryogenesis tissue samples when compared to CG and CHG methylation. Strong correlation (89.71%) was identified between the differentially methylated regions (DMRs) and the site ofTnt1 insertions inM. truncatula R108 and stronger hypermethylation of genes correlated with higher number ofTnt1 insertions in all contexts of CG, CHG, and CHH methylation. Gene ontology enrichment and KEGG pathway enrichment analysis identified genes and pathways enriched in the signal peptide processing, ATP hydrolysis, RNA polymerase activity, transport, secondary metabolites, and nitrogen metabolism pathways. Combined gene expression analysis and methylation profiling showed an inverse relationship between methylation in the DMRs (regions spanning genes) and the expression of genes. Our results show that a dynamic shift in methylation happens during the SE process in the context of CG, CHH and CHG methylation, and theTnt1 retrotransposition correlates with the hyperactive methylation regions. -
SUMMARY Flowering of the reference legume
Medicago truncatula is promoted by winter cold (vernalization) followed by long‐day photoperiods (VLD) similar to winter annual Arabidopsis. However, Medicago lacksFLC andCO , key regulators of Arabidopsis VLD flowering. Most plants have twoINHIBITOR OF GROWTH (ING ) genes (ING1 andING2 ), encoding proteins with an ING domain with two anti‐parallel alpha‐helices and a plant homeodomain (PHD) finger, but their genetic role has not been previously described. In Medicago,Mting1 gene‐edited mutants developed and flowered normally, but anMting2‐1 Tnt1 insertion mutant and gene‐editedMting2 mutants had developmental abnormalities including delayed flowering particularly in VLD, compact architecture, abnormal leaves with extra leaflets but no trichomes, and smaller seeds and barrels.Mting2 mutants had reduced expression of activators of flowering, including theFT ‐like geneMtFTa1 , and increased expression of the candidate repressorMtTFL1c , consistent with the delayed flowering of the mutant.MtING2 overexpression complementedMting2‐1 , but did not accelerate flowering in wild type. The MtING2 PHD finger bound H3K4me2/3 peptides weaklyin vitro , but analysis of gene‐edited mutants indicated that it was dispensable to MtING2 function in wild‐type plants. RNA sequencing experiments indicated that >7000 genes are mis‐expressed in theMting2‐1 mutant, consistent with its strong mutant phenotypes. Interestingly, ChIP‐seq analysis identified >5000 novel H3K4me3 locations in the genome ofMting2‐1 mutants compared to wild type R108. Overall, our mutant study has uncovered an important physiological role of a plantING2 gene in development, flowering, and gene expression, which likely involves an epigenetic mechanism. -
Meiotic recombination is a fundamental process that generates genetic diversity and ensures the accurate segregation of homologous chromosomes. While a great deal is known about genetic factors that regulate recombination, relatively little is known about epigenetic factors, such as DNA methylation. In maize, we examined the effects on meiotic recombination of a mutation in a component of the RNA-directed DNA methylation pathway,
Mop1 (Mediator of paramutation1 ), as well as a mutation in a component of thetrans -acting small interference RNA biogenesis pathway,Lbl1 (Leafbladeless1 ). MOP1 is of particular interest with respect to recombination because it is responsible for methylation of transposable elements that are immediately adjacent to transcriptionally active genes. In themop1 mutant, we found that meiotic recombination is uniformly decreased in pericentromeric regions but is generally increased in gene rich chromosomal arms. This observation was further confirmed by cytogenetic analysis showing that although overall crossover numbers are unchanged, they occur more frequently in chromosomal arms inmop1 mutants. Using whole genome bisulfite sequencing, our data show that crossover redistribution is driven by loss of CHH (where H = A, T, or C) methylation within regions near genes. In contrast to what we observed inmop1 mutants, no significant changes were observed in the frequency of meiotic recombination inlbl1 mutants. Our data demonstrate that CHH methylation has a significant impact on the overall recombination landscape in maize despite its low frequency relative to CG and CHG methylation. -
Summary Small RNAs trigger repressive DNA methylation at thousands of transposable elements in a process called RNA‐directed DNA methylation (RdDM). The molecular mechanism of RdDM is well characterized in Arabidopsis, yet the biological function remains unclear, as loss of RdDM in Arabidopsis causes no overt defects, even after generations of inbreeding. It is known that 24 nucleotide Pol IV‐dependent siRNAs, the hallmark of RdDM, are abundant in flowers and developing seeds, indicating that RdDM might be important during reproduction. Here we show that, unlike Arabidopsis, mutations in the Pol IV‐dependent small RNA pathway cause severe and specific reproductive defects in
Brassica rapa . High rates of abortion occur when seeds have RdDM mutant mothers, but not when they have mutant fathers. Although abortion occurs after fertilization, RdDM function is required in maternal somatic tissue, not in the female gametophyte or the developing zygote, suggesting that siRNAs from the maternal soma might function in filial tissues. We propose that recently outbreeding species such asB. rapa are key to understanding the role of RdDM during plant reproduction. -
Abstract In plants, de novo DNA methylation is guided by 24-nt short interfering (si)RNAs in a process called RNA-directed DNA methylation (RdDM). Primarily targeted at transposons, RdDM causes transcriptional silencing and can indirectly influence expression of neighboring genes. During reproduction, a small number of siRNA loci are dramatically upregulated in the maternally derived seed coat, suggesting that RdDM might have a special function during reproduction. However, the developmental consequence of RdDM has been difficult to dissect because disruption of RdDM does not result in overt phenotypes in Arabidopsis (Arabidopsis thaliana), where the pathway has been most thoroughly studied. In contrast, Brassica rapa mutants lacking RdDM have a severe seed production defect, which is determined by the maternal sporophytic genotype. To explore the factors that underlie the different phenotypes of these species, we produced RdDM mutations in 3 additional members of the Brassicaceae family: Camelina sativa, Capsella rubella, and Capsella grandiflora. Among these 3 species, only mutations in the obligate outcrosser, C. grandiflora, displayed a seed production defect similar to Brassica rapa mutants, suggesting that mating system is a key determinant for reproductive phenotypes in RdDM mutants.