skip to main content


Title: Surface Alloying of Internal Surfaces of Low‐Carbon Steel Castings through Incorporation of Nickel, Nickel and Chromium, and 316L Stainless Steel Powders to Mold and Core Surfaces
  more » « less
NSF-PAR ID:
10445867
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
steel research international
Volume:
93
Issue:
4
ISSN:
1611-3683
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. "Binder jetting is an economical and rapid additive manufacturing process that offers vast opportunities to combine a variety of materials, yielding interesting and useful properties. However, binder jetted parts, which can involve at least one hard and one soft material, can be more susceptible to corrosion and wear compared to conventional single alloy components produced by laser sintering or other high-temperature processes. This paper discusses the electroless nickel coating on 420 Stainless Steel and Bronze Binder-Jetted Composites(BJC). Electroless nickel, a well-known coating to provide high corrosion resistance and hardness, was attempted on BJC. To produce high-quality smooth electroless nickel coatings, we attempted the Taguchi Design of Experiments. Our design of experiment involved important factors, such as the surface preparation methodology prior to electroless nickel coating. During electroless nickel coating, we investigated the role of phosphorus content, temperature, and time in the production of smooth deposition. Optical microscopy was performed for qualitative and quantitative analysis. We also performed SEM to investigate the microstructure of different electroless coatings on BJC. Interestingly, all the combinations of parameters used in the electroless nickel coating produced different microstructures. We found that surface preparation was a critical factor in determining the smoothness of the film. We also showed that the dependent on the Ni solution’s phosphorus level and temperature. Our research ng insights for improving the usefulness of a wide variety of BJC by various coatings." 
    more » « less
  2. Nickel-chromium-molybdenum (NiCrMo) alloys are well-known for having exceptional corrosion resistance, but their electrocatalytic properties have not been extensively studied. In this paper, the development of electro-active nickel-oxyhydroxide (NiOOH) phases and kinetics of the oxygen evolution reaction (OER) have been examined on alloys G35, B3, and C276 in alkaline electrolyte at 25 °C. Reproducible oxide layers were grown by potential cycling between 0.85 and 1.52 V vs RHE up to 600 cycles, and the transition between Ni(OH) 2 and NiOOH was monitored by cyclic voltammetry throughout. Onset potentials, Tafel slopes, and turnover frequencies (TOF) were measured at OER overpotentials between 270 and 390 mV. Alloys with dissimilar Cr:Mo ratios had significantly higher electrochemical surface area and increased γ -NiOOH formation, suggesting higher metal dissolution rates. The equal Cr:Mo concentration alloy and pure Ni developed a primarily β -NiOOH surface, and had 1.8–2.0 times larger TOF values than those containing significant γ -NiOOH. The NiCrMo alloys required smaller overpotentials (54–80 mV) to produce 10 mA cm −2 of OER current, and had comparable Tafel slopes to pure Ni. The findings here indicate a β -NiOOH-developed surface to be more OER-active than a γ -NiOOH-developed surface, and suggest certain NiCrMo alloys have promise as OER electrocatalysts. 
    more » « less
  3. Abstract

    A multistep deposition technique is developed to produce highly oriented diamond films by hot filament chemical vapor deposition (HFCVD) on Si (111) substrates. The orientation is produced by use of a thin, 5–20 nm, Ni interlayer. Annealing studies demonstrate diffusion of Ni into Si to form nickel silicides with crystal structure depending on temperature. The HFCVD diamond film with Ni interlayer results in reduced non-diamond carbon, low surface roughness, high diamond crystal quality, and increased texturing relative to growth on bare silicon wafers. X-ray diffraction results show that the diamond film grown with 10 nm Ni interlayer yielded 92.5% of the diamond grains oriented along the (110) crystal planes with ~ 2.5 µm thickness and large average grain size ~ 1.45 µm based on scanning electron microscopy. Texture is also observed to develop for ~ 300 nm thick diamond films with ~ 89.0% of the grains oriented along the (110) crystal plane direction. These results are significantly better than diamond grown on Si (111) without Ni layer with the same HFCVD conditions. The oriented growth of diamond film on Ni interlayers is explained by a proposed model wherein the nano-diamond seeds becoming oriented relative to the β1-Ni3Si that forms during the diamond nucleation period. The model also explains the silicidation and diamond growth processes.

    Article Highlights

    High quality diamond film with minimum surface roughness and ~93% oriented grains along (110) crystallographic direction is grown on Si substrate using a thin 5 to 20 nm nickel layer.

    A detailed report on the formation of different phases of nickel silicide, its stability with different temperature, and its role for diamond film texturing at HFCVD growth condition is presented.

    A diamond growth model on Si substrate with Ni interlayer to grow high quality-oriented diamond film is established.

     
    more » « less
  4. Abstract

    316L stainless steel (316L SS) is a flagship material for structural applications in corrosive environments, having been extensively studied for decades for its favorable balance between mechanical and corrosion properties. More recently, 316L SS has also proven to have excellent printability when parts are produced with additive manufacturing techniques, notably laser powder bed fusion (LPBF). Because of the harsh thermo-mechanical cycles experienced during rapid solidification and cooling, LPBF processing tends to generate unique microstructures. Strong heterogeneities can be found inside grains, including trapped elements, nano-inclusions, and a high density of dislocations that form the so-called cellular structure. Interestingly, LPBF 316L SS not only exhibits better mechanical properties than its conventionally processed counterpart, but it also usually offers much higher resistance to pitting in chloride solutions. Unfortunately, the complexity of the LPBF microstructures, in addition to process-induced defects, such as porosity and surface roughness, have slowed progress toward linking specific microstructural features to corrosion susceptibility and complicated the development of calibrated simulations of pitting phenomena. The first part of this article is dedicated to an in-depth review of the microstructures found in LPBF 316L SS and their potential effects on the corrosion properties, with an emphasis on pitting resistance. The second part offers a perspective of some relevant modeling techniques available to simulate the corrosion of LPBF 316L SS, including current challenges that should be overcome.

     
    more » « less
  5. As more emphasis is placed on thinner gauges and stronger steel grades for more fuel efficient, and crash-worthy vehicles, corrosion becomes a more important consideration. This demand has led to the development of advanced high strength steel (AHSS) grades such as dual-phase (DP) and transformation-induced plasticity (TRIP) aided steels. To protect these steels from corrosion, a hot-dip galvanizing (HDG) or galvannealing (GA) process is employed. However, alloying with Mn and Si can cause complex surface oxides during annealing, which may result in defects in the zinc coating1-8. In order to increase AHSS galvanizability, selective oxidation of alloying elements in DP and TRIP-aided steel needs to be understood. Depending on annealing atmosphere, the mechanism (internal or external) of oxidation can change, as well as the thermodynamic stability of the oxide. Wagner’s theory of oxidation enables prediction of the mechanism of oxidation for binary oxide systems9. The defects can be present after pickling and fluxing, causing wettability issues during the HDG process. Coating defects may also form or be further exacerbated by the galvannealing operation. For this work, oxidation mechanism predictions were performed using Wagner’s theory of oxidation. In the present study a 0.07C-1.9Mn-0.2Si-0.3Cr galvannealed dual-phase steel which exhibited streaking defects in the coating was analyzed. Light optical metallography (LOM) and scanning electron microscopy (SEM) were performed to characterize defects within the galvannealed coating. Static spectra and 3-D profiling using time of flight secondary ion mass spectrometry (TOF-SIMS) was employed. It was found that Mn rich Si containing oxides are present on the steel-coating interface. It does not appear that these oxides affect wettability, however they may have an influence on intermetallic growth during galvannealing. This, combined with an influence from the micro-grooves of the sink roll in the Zn pot, may lead to the streaking defects observed. 
    more » « less