skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climatology and Evolution of the Antarctic Peninsula Föhn Wind‐Induced Melt Regime From 1979–2018
Abstract Warm and dry föhn winds on the Antarctic Peninsula (AP) cause surface melt that can destabilize vulnerable ice shelves. Topographic funneling of these downslope winds through mountain passes and canyons can produce localized wind‐induced melt that is difficult to quantify without direct measurements. Our Föhn Detection Algorithm (FöhnDA) identifies the surface föhn signature that causes melt from measurement by 12 Automatic Weather Stations on the AP, that train a machine learning model to detect föhn in 5 km Regional Atmospheric Climate Model 2 (RACMO2.3p2) simulations and in the ERA5 reanalysis model. We estimate the fraction of AP surface melt attributed to föhn and possibly katabatic winds and identify the drivers of melt, temporal variability, and long‐term trends and evolution from 1979–2018. We find that föhn wind‐induced melt accounts for 3.1% of the total melt on the AP and can be as high at 18% close to the mountains where the winds funnel through mountain canyons. Föhn‐induced surface melt does not significantly increase from 1979–2018, despite a warmer atmosphere and more positive Southern Annular Mode. However, a significant increase (+0.1 Gt y‐1) and subsequent decrease/stabilization occur in 1979–1998 and 1999–2018, consistent with the AP warming and cooling trends during the same time periods. Föhn occurrence, more than föhn strength, drives the annual variability in föhn‐induced melt. Long‐term föhn‐induced melt trends and evolution are attributable to seasonal changes in föhn occurrence, with increased occurrence in summer, and decreased occurrence in fall, winter, and early spring over the past 20 years.  more » « less
Award ID(s):
1633631
PAR ID:
10445904
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
4
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Antarctic sea ice extent (SIE) has slightly increased over the satellite observational period (1979 to the present) despite global warming. Several mechanisms have been invoked to explain this trend, such as changes in winds, precipitation, or ocean stratification, yet there is no widespread consensus. Additionally, fully coupled Earth system models run under historic and anthropogenic forcing generally fail to simulate positive SIE trends over this time period. In this work, we quantify the role of winds and Southern Ocean SSTs on sea ice trends and variability with an Earth system model run under historic and anthropogenic forcing that nudges winds over the polar regions and Southern Ocean SSTs north of the sea ice to observations from 1979 to 2018. Simulations with nudged winds alone capture the observed interannual variability in SIE and the observed long-term trends from the early 1990s onward, yet for the longer 1979–2018 period they simulate a negative SIE trend, in part due to faster-than-observed warming at the global and hemispheric scale in the model. Simulations with both nudged winds and SSTs show no significant SIE trends over 1979–2018, in agreement with observations. At the regional scale, simulated sea ice shows higher skill compared to the pan-Antarctic scale both in capturing trends and interannual variability in all nudged simulations. We additionally find negligible impact of the initial conditions in 1979 on long-term trends. 
    more » « less
  2. Abstract Southern Ocean surface cooling and Antarctic sea ice expansion from 1979 through 2015 have been linked both to changing atmospheric circulation and melting of Antarctica's grounded ice and ice shelves. However, climate models have largely been unable to reproduce this behavior. Here we examine the contribution of observed wind variability and Antarctic meltwater to Southern Ocean sea surface temperature (SST) and Antarctic sea ice. The free‐running, CMIP6‐class GISS‐E2.1‐G climate model can simulate regional cooling and neutral sea ice trends due to internal variability, but they are unlikely. Constraining the model to observed winds and meltwater fluxes from 1990 through 2021 gives SST variability and trends consistent with observations. Meltwater and winds contribute a similar amount to the SST trend, and winds contribute more to the sea ice trend than meltwater. However, while the constrained model captures much of the observed sea ice variability, it only partially captures the post‐2015 sea ice reduction. 
    more » « less
  3. Surface winds over California can compound fire risk during autumn, yet their long-term trends in the face of decadal warming are less clear compared to other climate variables like temperature, drought, and snowmelt. To determine where and how surface winds are changing most, this article uses multiple reanalyses and Remote Automated Weather Stations (RAWS) to calculate autumn 10 m wind speed trends during 1979–2020. Reanalysis trends show statistically significant increases in autumn night-time easterlies on the western slopes of the Sierra Nevada. Although downslope windstorms are frequent to this region, trends instead appear to result from elevated gradients in warming between California and the interior continent. The result is a sharper horizontal temperature gradient over the Sierra crest and adjacent free atmosphere above the foothills, strengthening the climatological nocturnal katabatic wind. While RAWS records show broad agreement, their trend is likely influenced by year-to-year changes in the number of observations. 
    more » « less
  4. Abstract The Greenland Ice Sheet is the primary source of global Barystatic sea‐level rise, and at least half of its recent mass‐loss acceleration is caused by surface meltwater runoff. Previous studies on surface melt have examined various thermodynamic and dynamic drivers, yet their contributions are not compared using unified observations. We use decade‐long in‐situ measurements from automatic weather stations throughout the ablation zone to assess energy components and identify the leading physical processes in this area. Large melt events exceeding 3σcontribute only ∼2% to total surface melt since 2007. The day‐to‐day variability of all melt is dominated by sensible heat exchange (31 ± 7%) and shortwave radiation (28 ± 5%). Sensible and solar heating correlate with the occurrence of dry and fast gravity‐driven winds. These katabatic winds increase sensible heating of the surface mainly by enhancing vertical mixing that reduces the temperature inversion. The concomitant low humidity and clear skies yield increased solar heating. 
    more » « less
  5. Abstract Over the past decades, Arctic climate has exhibited significant changes characterized by strong Pan-Arctic warming and a large scale wind shift trending toward an anticyclonic anomaly centered over Greenland and the Arctic ocean. Recent work has suggested that this wind change is able to warm the Arctic atmosphere and melt sea ice through dynamical-driven warming, moistening and ice drift effects. However, previous examination of this linkage lacks a capability to fully consider the complex nature of the sea ice response to the wind change. In this study, we perform a more rigorous test of this idea by using a coupled high-resolution modelling framework with observed winds nudged over the Arctic that allows for a comparison of these wind-induced effects with observations and simulated effects forced by anthropogenic forcing. Our nudging simulation can well capture observed variability of atmospheric temperature, sea ice and the radiation balance during the Arctic summer and appears to simulate around 30% of Arctic warming and sea ice melting over the whole period (1979-2020) and more than 50% over the period 2000 to 2012, which is the fastest Arctic warming decade in the satellite era. In particular, in the summer of 2020, a similar wind pattern reemerged to induce the second-lowest sea ice extent since 1979, suggesting that large scale wind changes in the Arctic is essential in shaping Arctic climate on interannual and interdecadal time scales and may be critical to determine Arctic climate variability in the coming decades. 
    more » « less